5,699 research outputs found

    Query Based Location Aware Energy Efficient Secure Multicast Routing for Wireless Sensor Networks Using Fuzzy Logic

    Get PDF
    In Wireless Sensor Networks (WSNs), balancing authentication and energy is a major concern while deploying for wireless applications. Due to the presence of attackers, node consumes excessive energy for packet replication or transmission. In existing work, it is observed that attention was not done on balancing energy and data authentication. Location aided routing will also support for achieving high network lifetime. Fuzzy decision approach was widely used in sensor network for ensuring quality of routing and transmission. In the proposed work, Fuzzy enhanced query based secure energy efficient multicast routing is implemented. Query based location based cluster formation is done for quick packet arrival. Optimal multicast routes are found to forward the packets with reliability. The reliable routes are identified using reliable index. Fuzzy decision model is integrated to provide secure and energy based network model for packet transmission. Network Simulator (NS2.35) is used for simulation for analyzing the performance of proposed protocol in terms of various network parameters

    Fuzzy Depth Based Routing Protocol for Underwater Acoustic Wireless Sensor Networks

    Get PDF
    Underwater Wireless Sensor Networks consist of a variable number of sensors and vehicles that are implemented to perform collaborative monitoring tasks over a given area. However, designing energy-efficient routing protocols for this type of networks is essential and challenging because the sensor nodes is powered by batteries, underwater environment is harsh and propagation delay is long. Most of the existing routing protocols used for underwater wireless sensor networks, such as depth based routing (DBR) protocol use a greedy approach to deliver data packets to the destination sink nodes at the water surface. Further, DBR does not require full-dimensional location information of sensor nodes. Instead, it needs only local depth information, which can be easily obtained with an inexpensive depth sensor that can be equipped in every underwater sensor node. DBR uses smaller depth as the only metric for choosing a route. This decision might lead to high energy consumption and long end to end delay which will degrade network performance. This paper proposes an improvement of DBR protocol by making routing decisions depend on fuzzy cost based on the residual energy of receiver node in conjunction with the depth difference of receiver node and previous forwarder node and the number of hops traveled by the received packet. Our simulation was carried out in Aquasim an NS2 based underwater simulator and the evaluation results show that the proposed fuzzy multi metric DBR protocol (FDBR) performs better than the original DBR in terms of average end to end delay, packet delivery ratio and energy savin

    An Energy Efficient Routing Protocol for Wireless Sensor Networks using A-star Algorithm

    Get PDF
    AbstractSensors are regarded as significant components of electronic devices. In most applications of wireless sensor networks (WSNs), important and critical information must be delivered to the sink in a multi-hop and energy-efficient manner. Inasmuch as the energy of sensor nodes is limited, prolonging network lifetime in WSNs is considered to be a critical issue. In order to extend the network lifetime, researchers should consider energy consumption in routing protocols of WSNs. In this paper, a new energy-efficient routing protocol (EERP) has been proposed for WSNs using A-star algorithm. The proposed routing scheme improves the network lifetime by forwarding data packets via the optimal shortest path. The optimal path can be discovered with regard to the maximum residual energy of the next hop sensor node, high link quality, buffer occupancy and minimum hop counts. Simulation results indicate that the proposed scheme improves network lifetime in comparison with A-star and fuzzy logic(A&F) protocol

    Cross-layer Balanced and Reliable Opportunistic Routing Algorithm for Mobile Ad Hoc Networks

    Full text link
    For improving the efficiency and the reliability of the opportunistic routing algorithm, in this paper, we propose the cross-layer and reliable opportunistic routing algorithm (CBRT) for Mobile Ad Hoc Networks, which introduces the improved efficiency fuzzy logic and humoral regulation inspired topology control into the opportunistic routing algorithm. In CBRT, the inputs of the fuzzy logic system are the relative variance (rv) of the metrics rather than the values of the metrics, which reduces the number of fuzzy rules dramatically. Moreover, the number of fuzzy rules does not increase when the number of inputs increases. For reducing the control cost, in CBRT, the node degree in the candidate relays set is a range rather than a constant number. The nodes are divided into different categories based on their node degree in the candidate relays set. The nodes adjust their transmission range based on which categories that they belong to. Additionally, for investigating the effection of the node mobility on routing performance, we propose a link lifetime prediction algorithm which takes both the moving speed and moving direction into account. In CBRT, the source node determines the relaying priorities of the relaying nodes based on their utilities. The relaying node which the utility is large will have high priority to relay the data packet. By these innovations, the network performance in CBRT is much better than that in ExOR, however, the computation complexity is not increased in CBRT.Comment: 14 pages, 17 figures, 31 formulas, IEEE Sensors Journal, 201

    A Trust Based Congestion Aware Hybrid Ant Colony Optimization Algorithm for Energy Efficient Routing in Wireless Sensor Networks (TC-ACO)

    Full text link
    Congestion is a problem of paramount importance in resource constrained Wireless Sensor Networks, especially for large networks, where the traffic loads exceed the available capacity of the resources. Sensor nodes are prone to failure and the misbehavior of these faulty nodes creates further congestion. The resulting effect is a degradation in network performance, additional computation and increased energy consumption, which in turn decreases network lifetime. Hence, the data packet routing algorithm should consider congestion as one of the parameters, in addition to the role of the faulty nodes and not merely energy efficient protocols. Unfortunately most of the researchers have tried to make the routing schemes energy efficient without considering congestion factor and the effect of the faulty nodes. In this paper we have proposed a congestion aware, energy efficient, routing approach that utilizes Ant Colony Optimization algorithm, in which faulty nodes are isolated by means of the concept of trust. The merits of the proposed scheme are verified through simulations where they are compared with other protocols.Comment: 6 pages, 5 figures and 2 tables (Conference Paper
    corecore