2,140 research outputs found

    Fuzzy TOPSIS-based Secure Neighbor Discovery Mechanism for Improving Reliable Data Dissemination in Wireless Sensor Networks

    Get PDF
    Wireless Sensor Networks (WSNs) being an indispensable entity of the Internet of Things (IoT) are found to be more and more widely utilized for the rapid advent of IoT environment. The reliability of data dissemination in the IoT environment completely depends on the secure neighbor discovery mechanism that are utilized for effective and efficient communication among the sensor nodes. Secure neighbor discovery mechanisms that significantly determine trustworthy sensor nodes are essential for maintaining potential connectivity and sustaining reliable data delivery in the energy-constrained self organizing WSN. In this paper, Fuzzy Technique of Order Preference Similarity to the Ideal Solution (TOPSIS)-based Secure Neighbor Discovery Mechanism (FTOPSIS-SNDM) is proposed for estimating the trust of each sensor node in the established routing path for the objective of enhancing reliable data delivery in WSNs. This proposed FTOPSIS-SNDM is proposed as an attempt to integrate the merits of Fuzzy Set Theory (FST) and TOPSIS-based Multi-criteria Decision Making (MCDM) approach, since the discovery of secure neighbors involves the exchange of imprecise data and uncertain behavior of sensor nodes. This secure neighbor is also influenced by the factors of packet forwarding potential, delay, distance from the Base Station (BS) and residual energy, which in turn depends on multiple constraints that could be possibly included into the process of secure neighbor discovery. The simulation investigations of the proposed FTOPSIS-SNDM confirmed its predominance over the benchmarked approaches in terms of throughput, energy consumption, network latency, communication overhead for varying number of genuine and malicious neighboring sensor nodes in network

    A Level-Wise Periodic Tree Construction Mechanism for Sleep Scheduling in WSN

    Get PDF
    The wireless sensor network(WSN) has been extensively used to monitor and control the natural ecosystem on a large scale like air quality, natural life, etc. Low battery power,low storage, and limited processing ability are the most critical areas of concern in WSN. To reduce energy utilization, the sensor nodes in WSN work in a cyclic process between active and sleep mode. A certain number of nodes are chosen active and they areresponsible for sensing as well as data transmission and rest of the nodes are gone to sleep. In order to lengthen the lifetime of network, in this paper we proposed a level wise periodic tree construction algorithm that uses a specific set of nodes to participate in tree construction, instead of all the nodes, to minimize the energy consumption. In this proposed approach, the main idea is to put the nodes, which are currently active and have already spent a significant amount of energy, to sleep mode, while giving chances to the leaf nodes, which has comparatively spent less energy, to become an active node and maintain connectivity. The performance of the proposed protocol is evaluated usingthe Castalia simulator. The simulation results show that the proposed level-wise periodic tree construction approach increases the durability of the network in conjunction with the non-level approach

    Configurable Secured Adaptive Routing Protocol for Mobile Wireless Sensor Networks

    Get PDF
    This paper aims at designing, building, and simulating a secured routing protocol to defend against packet dropping attacks in mobile WSNs (MWSNs). This research addresses the gap in the literature by proposing Configurable Secured Adaptive Routing Protocol (CSARP). CSARP has four levels of protection to allow suitability for different types of network applications. The protocol allows the network admin to configure the required protection level and the ratio of cluster heads to all nodes. The protocol has an adaptive feature, which allows for better protection and preventing the spread of the threats in the network. The conducted CSARP simulations with different conditions showed the ability of CSARP to identify all malicious nodes and remove them from the network. CSARP provided more than 99.97% packets delivery rate with 0% data packet loss in the existence of 3 malicious nodes in comparison with 3.17% data packet loss without using CSARP. When compared with LEACH, CSARP showed an improvement in extending the lifetime of the network by up to 39.5%. The proposed protocol has proven to be better than the available security solutions in terms of configurability, adaptability, optimization for MWSNs, energy consumption optimization, and the suitability for different MWSNs applications and conditions

    Emerging Communications for Wireless Sensor Networks

    Get PDF
    Wireless sensor networks are deployed in a rapidly increasing number of arenas, with uses ranging from healthcare monitoring to industrial and environmental safety, as well as new ubiquitous computing devices that are becoming ever more pervasive in our interconnected society. This book presents a range of exciting developments in software communication technologies including some novel applications, such as in high altitude systems, ground heat exchangers and body sensor networks. Authors from leading institutions on four continents present their latest findings in the spirit of exchanging information and stimulating discussion in the WSN community worldwide

    Mobile Ad-Hoc Networks

    Get PDF
    Being infrastructure-less and without central administration control, wireless ad-hoc networking is playing a more and more important role in extending the coverage of traditional wireless infrastructure (cellular networks, wireless LAN, etc). This book includes state-of-the-art techniques and solutions for wireless ad-hoc networks. It focuses on the following topics in ad-hoc networks: quality-of-service and video communication, routing protocol and cross-layer design. A few interesting problems about security and delay-tolerant networks are also discussed. This book is targeted to provide network engineers and researchers with design guidelines for large scale wireless ad hoc networks

    Determination of Collection Points for Disjoint Wireless Sensor Networks

    Get PDF

    A Comprehensive Survey on Routing and Security in Mobile Wireless Sensor Networks

    Get PDF
    With the continuous advances in mobile wirelesssensor networks (MWSNs), the research community hasresponded to the challenges and constraints in the design of thesenetworks by proposing efficient routing protocols that focus onparticular performance metrics such as residual energy utilization,mobility, topology, scalability, localization, data collection routing,Quality of Service (QoS), etc. In addition, the introduction ofmobility in WSN has brought new challenges for the routing,stability, security, and reliability of WSNs. Therefore, in thisarticle, we present a comprehensive and meticulous investigationin the routing protocols and security challenges in the theory ofMWSNs which was developed in recent years

    Fuzzy Logic

    Get PDF
    The capability of Fuzzy Logic in the development of emerging technologies is introduced in this book. The book consists of sixteen chapters showing various applications in the field of Bioinformatics, Health, Security, Communications, Transportations, Financial Management, Energy and Environment Systems. This book is a major reference source for all those concerned with applied intelligent systems. The intended readers are researchers, engineers, medical practitioners, and graduate students interested in fuzzy logic systems
    corecore