2,533 research outputs found

    Unified clustering and communication protocol for wireless sensor networks

    Get PDF
    In this paper we present an energy-efficient cross layer protocol for providing application specific reservations in wireless senor networks called the “Unified Clustering and Communication Protocol ” (UCCP). Our modular cross layered framework satisfies three wireless sensor network requirements, namely, the QoS requirement of heterogeneous applications, energy aware clustering and data forwarding by relay sensor nodes. Our unified design approach is motivated by providing an integrated and viable solution for self organization and end-to-end communication is wireless sensor networks. Dynamic QoS based reservation guarantees are provided using a reservation-based TDMA approach. Our novel energy-efficient clustering approach employs a multi-objective optimization technique based on OR (operations research) practices. We adopt a simple hierarchy in which relay nodes forward data messages from cluster head to the sink, thus eliminating the overheads needed to maintain a routing protocol. Simulation results demonstrate that UCCP provides an energy-efficient and scalable solution to meet the application specific QoS demands in resource constrained sensor nodes. Index Terms — wireless sensor networks, unified communication, optimization, clustering and quality of service

    Wireless industrial monitoring and control networks: the journey so far and the road ahead

    Get PDF
    While traditional wired communication technologies have played a crucial role in industrial monitoring and control networks over the past few decades, they are increasingly proving to be inadequate to meet the highly dynamic and stringent demands of today’s industrial applications, primarily due to the very rigid nature of wired infrastructures. Wireless technology, however, through its increased pervasiveness, has the potential to revolutionize the industry, not only by mitigating the problems faced by wired solutions, but also by introducing a completely new class of applications. While present day wireless technologies made some preliminary inroads in the monitoring domain, they still have severe limitations especially when real-time, reliable distributed control operations are concerned. This article provides the reader with an overview of existing wireless technologies commonly used in the monitoring and control industry. It highlights the pros and cons of each technology and assesses the degree to which each technology is able to meet the stringent demands of industrial monitoring and control networks. Additionally, it summarizes mechanisms proposed by academia, especially serving critical applications by addressing the real-time and reliability requirements of industrial process automation. The article also describes certain key research problems from the physical layer communication for sensor networks and the wireless networking perspective that have yet to be addressed to allow the successful use of wireless technologies in industrial monitoring and control networks

    Wireless broadband access: WiMAX and beyond - Investigation of bandwidth request mechanisms under point-to-multipoint mode of WiMAX networks

    Get PDF
    The WiMAX standard specifies a metropolitan area broadband wireless access air interface. In order to support QoS for multimedia applications, various bandwidth request and scheduling mechanisms are suggested in WiMAX, in which a subscriber station can send request messages to a base station, and the base station can grant or reject the request according to the available radio resources. This article first compares two fundamental bandwidth request mechanisms specified in the standard, random access vs. polling under the point-to-multipoint mode, a mandatory transmission mode. Our results demonstrate that random access outperforms polling when the request rate is low. However, its performance degrades significantly when the channel is congested. Adaptive switching between random access and polling according to load can improve system performance. We also investigate the impact of channel noise on the random access request mechanism

    Energy-efficient wireless communication

    Get PDF
    In this chapter we present an energy-efficient highly adaptive network interface architecture and a novel data link layer protocol for wireless networks that provides Quality of Service (QoS) support for diverse traffic types. Due to the dynamic nature of wireless networks, adaptations in bandwidth scheduling and error control are necessary to achieve energy efficiency and an acceptable quality of service. In our approach we apply adaptability through all layers of the protocol stack, and provide feedback to the applications. In this way the applications can adapt the data streams, and the network protocols can adapt the communication parameters

    Energy-efficient bandwidth reservation for bulk data transfers in dedicated wired networks

    Get PDF
    International audienceThe ever increasing number of Internet connected end-hosts call for high performance end-to-end networks leading to an increase in the energy consumed by the networks. Our work deals with the energy consumption issue in dedicated network with bandwidth provisionning and in-advance reservations of network equipments and bandwidth for Bulk Data transfers. First, we propose an end-to-end energy cost model of such networks which described the energy consumed by a transfer for all the crossed equipments. This model is then used to develop a new energy-aware framework adapted to Bulk Data Transfers over dedicated networks. This framework enables switching off unused network portions during certain periods of time to save energy. This framework is also endowed with prediction algorithms to avoid useless switching off and with adaptive scheduling management to optimize the energy used by the transfers. 1 Introductio

    Multiobjective auction-based switching-off scheme in heterogeneous networks: to bid or not to bid?

    Get PDF
    ©2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.The emerging data traffic demand has caused a massive deployment of network infrastructure, including Base Stations (BSs) and Small Cells (SCs), leading to increased energy consumption and expenditures. However, the network underutilization during low traffic periods enables the Mobile Network Operators (MNOs) to save energy by having their traffic served by third party SCs, thus being able to switch off their BSs. In this paper, we propose a novel market approach to foster the opportunistic utilization of the unexploited SCs capacity, where the MNOs, instead of requesting the maximum capacity to meet their highest traffic expectations, offer a set of bids requesting different resources from the third party SCs at lower costs. Motivated by the conflicting financial interests of the MNOs and the third party, the restricted capacity of the SCs that is not adequate to carry the whole traffic in multi-operator scenarios, and the necessity for energy efficient solutions, we introduce a combinatorial auction framework, which includes i) a bidding strategy, ii) a resource allocation scheme, and iii) a pricing rule. We propose a multiobjective framework as an energy and cost efficient solution for the resource allocation problem, and we provide extensive analytical and experimental results to estimate the potential energy and cost savings that can be achieved. In addition, we investigate the conditions under which the MNOs and the third party companies should take part in the proposed auction.Peer ReviewedPostprint (author's final draft

    A quantitative comparison of multiple access control protocols for wireless ATM

    Get PDF
    The multiple access control (MAC) problem in a wireless network has intrigued researchers for years. For a broad-band wireless network such as wireless ATM, an effective MAC protocol is very much desired because efficient allocation of channel bandwidth is imperative in accommodating a large user population with satisfactory quality of service. Indeed, MAC protocols for a wireless ATM network in which user traffic requirements are highly heterogeneous (classified into CBR, VBR, and ABR), are even more intricate to design. Considerable research efforts expended in tackling the problem have resulted in a myriad of MAC protocols. While each protocol is individually shown to be effective by the respective designers, it is unclear how these different protocols compare against each other on a unified basis. In this paper, we quantitatively compare seven recently proposed TDMA-based MAC protocols for integrated wireless data and voice services. We first propose a taxonomy of TDMA-based protocols, from which we carefully select seven protocols, namely SCAMA, DTDMA/VR, DTDMA/PR, DQRUMA, DPRMA, DSA++, and PRMA/DA, such that they are devised based on rather orthogonal design philosophies. The objective of our comparison is to highlight the merits and demerits of different protocol designs.published_or_final_versio

    Goodbye, ALOHA!

    Get PDF
    ©2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.The vision of the Internet of Things (IoT) to interconnect and Internet-connect everyday people, objects, and machines poses new challenges in the design of wireless communication networks. The design of medium access control (MAC) protocols has been traditionally an intense area of research due to their high impact on the overall performance of wireless communications. The majority of research activities in this field deal with different variations of protocols somehow based on ALOHA, either with or without listen before talk, i.e., carrier sensing multiple access. These protocols operate well under low traffic loads and low number of simultaneous devices. However, they suffer from congestion as the traffic load and the number of devices increase. For this reason, unless revisited, the MAC layer can become a bottleneck for the success of the IoT. In this paper, we provide an overview of the existing MAC solutions for the IoT, describing current limitations and envisioned challenges for the near future. Motivated by those, we identify a family of simple algorithms based on distributed queueing (DQ), which can operate for an infinite number of devices generating any traffic load and pattern. A description of the DQ mechanism is provided and most relevant existing studies of DQ applied in different scenarios are described in this paper. In addition, we provide a novel performance evaluation of DQ when applied for the IoT. Finally, a description of the very first demo of DQ for its use in the IoT is also included in this paper.Peer ReviewedPostprint (author's final draft
    • …
    corecore