4,051 research outputs found

    Cooperative Interactive Distributed Guidance on Mobile Devices

    Get PDF
    Mobiles device are quickly becoming an indispensable part of our society. Equipped with numerous communication capabilities, they are increasingly being examined as potential tools for civilian and military usage to aide in distributed remote collaboration for dynamic decision making and physical task completion. With an ever growing mobile workforce, the need for remote assistance in aiding field workers who are confronted with situations outside their expertise certainly increases. Enhanced capabilities in using mobile devices could significantly improve numerous components of a task\u27s completion (i.e. accuracy, timing, etc.). This dissertation considers the design of mobile implementation of technology and communication capabilities to support interactive collaboration between distributed team members. Specifically, this body of research seeks to explore and understand how various multimodal remote assistances affect both the human user\u27s performance and the mobile device\u27s effectiveness when used during cooperative tasks. Additionally, power effects are additionally studied to assess the energy demands on a mobile device supporting multimodal communication. In a series of applied experiments and demonstrations, the effectiveness of a mobile device facilitating multimodal collaboration is analyzed through both empirical data collection and subjective exploration. The utility of the mobile interactive system and its configurations are examined to assess the impact on distributed task performance and collaborative dialogue between pairs. The dissertation formulates and defends an argument that multimodal communication capabilities should be incorporated into mobile communication channels to provide collaborating partners salient perspectives with a goal of reaching a mutual understanding of task procedures. The body of research discusses the findings of this investigation and highlight these findings they may influence future mobile research seeking to enhance interactive distributed guidance

    Cooperative strategies for the detection and localization of odorants with robots and artificial noses

    Full text link
    En este trabajo de investigación se aborda el diseño de una plataforma robótica orientada a la implementación de estrategias de búsqueda cooperativa bioinspiradas. En particular, tanto el proceso de diseño de la parte electrónica como hardware se han enfocado hacia la validación en entornos reales de algoritmos capaces de afrontar problemas de búsqueda con incertidumbre, como lo es la búsqueda de fuentes de olor que presentan variación espacial y temporal. Este tipo de problemas pueden ser resueltos de forma más eficiente con el empleo de enjambres con una cantidad razonable de robots, y por tanto la plataforma ha sido desarrollada utilizando componentes de bajo coste. Esto ha sido posible por la combinación de elementos estandarizados -como la placa controladora Arduino y otros sensores integrados- con piezas que pueden ser fabricadas mediante una impresora 3D atendiendo a la filosofía del hardware libre (open-source). Entre los requisitos de diseño se encuentran además la eficiencia energética -para maximizar el tiempo de funcionamiento de los robots-, su capacidad de posicionamiento en el entorno de búsqueda, y la integración multisensorial -con la inclusión de una nariz electrónica, sensores de luminosidad, distancia, humedad y temperatura, así como una brújula digital-. También se aborda el uso de una estrategia de comunicación adecuada basada en ZigBee. El sistema desarrollado, denominado GNBot, se ha validado tanto en los aspectos de eficiencia energética como en sus capacidades combinadas de posicionamiento espacial y de detección de fuentes de olor basadas en disoluciones de etanol. La plataforma presentada -formada por el GNBot, su placa electrónica GNBoard y la capa de abstracción software realizada en Python- simplificará por tanto el proceso de implementación y evaluación de diversas estrategias de detección, búsqueda y monitorización de odorantes, con la estandarización de enjambres de robots provistos de narices artificiales y otros sensores multimodales.This research work addresses the design of a robotic platform oriented towards the implementation of bio-inspired cooperative search strategies. In particular, the design processes of both the electronics and hardware have been focused towards the real-world validation of algorithms that are capable of tackling search problems that have uncertainty, such as the search of odor sources that have spatio-temporal variability. These kind of problems can be solved more efficiently with the use of swarms formed by a considerable amount of robots, and thus the proposed platform makes use of low cost components. This has been possible with the combination of standardized elements -as the Arduino controller board and other integrated sensors- with custom parts that can be manufactured with a 3D printer attending to the open-source hardware philosophy. Among the design requirements is the energy efficiency -in order to maximize the working range of the robots-, their positioning capability within the search environment, and multiple sensor integration -with the incorporation of an artificial nose, luminosity, distance, humidity and temperature sensors, as well as an electronic compass-. Another subject that is tackled is the use of an efficient wireless communication strategy based on ZigBee. The developed system, named GNBot, has also been validated in the aspects of energy efficiency and for its combined capabilities for autonomous spatial positioning and detection of ethanol-based odor sources. The presented platform -formed by the GNBot, the GNBoard electronics and the abstraction layer built in Python- will thus simplify the processes of implementation and evaluation of various strategies for the detection, search and monitoring of odorants with conveniently standardized robot swarms provided with artificial noses and other multimodal sensors

    Interim research assessment 2003-2005 - Computer Science

    Get PDF
    This report primarily serves as a source of information for the 2007 Interim Research Assessment Committee for Computer Science at the three technical universities in the Netherlands. The report also provides information for others interested in our research activities

    Can smartwatches replace smartphones for posture tracking?

    Get PDF
    This paper introduces a human posture tracking platform to identify the human postures of sitting, standing or lying down, based on a smartwatch. This work develops such a system as a proof-of-concept study to investigate a smartwatch's ability to be used in future remote health monitoring systems and applications. This work validates the smartwatches' ability to track the posture of users accurately in a laboratory setting while reducing the sampling rate to potentially improve battery life, the first steps in verifying that such a system would work in future clinical settings. The algorithm developed classifies the transitions between three posture states of sitting, standing and lying down, by identifying these transition movements, as well as other movements that might be mistaken for these transitions. The system is trained and developed on a Samsung Galaxy Gear smartwatch, and the algorithm was validated through a leave-one-subject-out cross-validation of 20 subjects. The system can identify the appropriate transitions at only 10 Hz with an F-score of 0.930, indicating its ability to effectively replace smart phones, if needed

    Congestion management systems development and implementation : four case studies

    Get PDF
    To address concerns of poor air quality, congested highways and the need to manage and plan for transportation within budgetary constraints, the Intermodal Surface Transportation Efficiency Act of 1991 (ISTEA) mandated the development and implementation of a Congestion Management System (CMS). Primarily, a CMS will fuel transportation decision making with information on system performance and alternate strategies to alleviate congestion and enhance mobility. Efforts through ISTEA are expected to produce a more efficient American transportation system -- this thesis takes a look at the preparatory activities. It is based on a federally funded project with metropolitan planning organizations (MPOs) in Albany, New York; Dallas, Texas; Seattle, Washington and the Washington D.C. metropolitan area. The thesis examines the approach to specific elements of CMS implementation and identifies factors contributing to their effectiveness. As expected, coordination and cooperation among participants has presented the greatest challenge. With regards to data collection, performance measures and the application of new technology, MPOs report that building on existing analytical efforts and strengthening inter- agency relationships has been the best strategy. Stepping back from the findings of the case studies, the author concludes that this information may arrive to states and localities with very little lead time to be effective technical assistance. Arguably, the case studies may provide insight into CMS as a whole and possibly predict the effectiveness of ISTEA. In that regard, this thesis is expected to aid future transportation policy making efforts

    DECOMOBIL Human Centred Design for Safety Critical Transport Systems. Deliverable 3.6

    Get PDF
    The scientific seminar on 'Human Centred Design for Safety Critical Transport Systems' organized in the framework of DECOMOBIL has been held the 8th of September 2014 in Lisbon, Portugal, hosted by ADI/ISG. The aims of the event were to present the scientific problematic related to the safety of the complex transport systems and the increasing importance of human-­centred design, with a specific focus on Resilience Engineering concept, a new approach to safety management in highly complex systems, on knowledge and experience from other transport modes, particularly aviation and space, in which automation processes are accompanied by an increase in safety and security and on the safety of vulnerable road users and its potential link to automation. To close the workshop, an analysis of safety vs. ecomobility highlighting research priorities has been presented to the audience. As a special speaker, Myriam Coulon-­Cantuer, EC Project Officer of the DG Connect, presented the view of the EC on the future research challenges for ICT and transport. Document type: Repor
    corecore