112 research outputs found

    Wearable Communications in 5G: Challenges and Enabling Technologies

    Full text link
    As wearable devices become more ingrained in our daily lives, traditional communication networks primarily designed for human being-oriented applications are facing tremendous challenges. The upcoming 5G wireless system aims to support unprecedented high capacity, low latency, and massive connectivity. In this article, we evaluate key challenges in wearable communications. A cloud/edge communication architecture that integrates the cloud radio access network, software defined network, device to device communications, and cloud/edge technologies is presented. Computation offloading enabled by this multi-layer communications architecture can offload computation-excessive and latency-stringent applications to nearby devices through device to device communications or to nearby edge nodes through cellular or other wireless technologies. Critical issues faced by wearable communications such as short battery life, limited computing capability, and stringent latency can be greatly alleviated by this cloud/edge architecture. Together with the presented architecture, current transmission and networking technologies, including non-orthogonal multiple access, mobile edge computing, and energy harvesting, can greatly enhance the performance of wearable communication in terms of spectral efficiency, energy efficiency, latency, and connectivity.Comment: This work has been accepted by IEEE Vehicular Technology Magazin

    Recent Advances in Cellular D2D Communications

    Get PDF
    Device-to-device (D2D) communications have attracted a great deal of attention from researchers in recent years. It is a promising technique for offloading local traffic from cellular base stations by allowing local devices, in physical proximity, to communicate directly with each other. Furthermore, through relaying, D2D is also a promising approach to enhancing service coverage at cell edges or in black spots. However, there are many challenges to realizing the full benefits of D2D. For one, minimizing the interference between legacy cellular and D2D users operating in underlay mode is still an active research issue. With the 5th generation (5G) communication systems expected to be the main data carrier for the Internet-of-Things (IoT) paradigm, the potential role of D2D and its scalability to support massive IoT devices and their machine-centric (as opposed to human-centric) communications need to be investigated. New challenges have also arisen from new enabling technologies for D2D communications, such as non-orthogonal multiple access (NOMA) and blockchain technologies, which call for new solutions to be proposed. This edited book presents a collection of ten chapters, including one review and nine original research works on addressing many of the aforementioned challenges and beyond

    Power allocation in a QoS-aware cellular-based vehicular communication system.

    Get PDF
    Masters Degree. University of KwaZulu- Natal, Durban.The task of a driver assistance system is to monitor the surrounding environment of a vehicle and provide an appropriate response in the case of detecting any hazardous condition. Such operation requires real-time processing of a large amount of information, which is gathered by a variety of sensors. Vehicular communication in future vehicles can pave the way for designing highly efficient and cost-effective driver assistance systems based on collaborative and remote processing solutions. The main transmission links of vehicular communication systems are vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I). In this research, a cellular-based vehicular communication system is proposed where Device-to-device (D2D) communication links are considered for establishing V2V links, and cellular communication links are employed for V2I links. D2D communication is one of the enablers of the next generation of cellular networks for improving spectrum and power utilization. D2D communication allows direct communication between user equipments within a cellular system. Nevertheless, implementing D2D communication should not defect nearby ongoing communication services. As a result, interference management is a significant aspect of designing D2D communication systems. Communication links in a cellular network are supposed to support a required level of data rates. The capacity of a communication channel is directly proportional to the energy of a transmitted signal, and in fact, achieving the desired level of Quality of Service (QoS) requires careful control of transmission power for all the radio sources within a system. Among different methods that are recommended for D2D communications, in-band D2D can offer better control over power transmission sources. In an underlay in-band D2D communication system, D2D user equipments (DUEs) usually reuse the cellular uplink (UL) spectrum. In such a system, the level of interference can effectively be managed by controlling the level of power that is transmitted by user equipments. To effectively perform the interference management, knowledge of the channel state information is required. However, as a result of the distributed nature of DUEs, such information is not fully attainable in a practical D2D system. Therefore, statistical methods are employed to find boundaries on the allocated transmission powers for achieving sufficient spectral efficiencies in V2I and V2V links without considering any prior knowledge on vehicles’ locations or the channel state information. Furthermore, the concepts of massive multiple-input multiple-output and underlay D2D communication sharing the uplink spectrum of a cellular system are used to minimize the interference effect

    A Hybrid Cryptographic System for Secured Device to Device Communication

    Get PDF
    It is general fact that even after enormous expansion of wireless communication there are still dead regions that hampers the effective communication. With exponential rise in the smart phones, a new layer of communication has evolved that could address the concerns of dead regions and capacity barriers. D2D is the evolving communication technology which focuses on short distance hops between the public devices to reach the destination. The major drawback of this technology is that most of the devices are public hence trustworthiness of the entire channel needs to be addressed in order to make it a viable solution. In this paper, we introduce a novel hybrid cryptographic approach that could address multiple eavesdroppers’ scenario. This approach incorporates both Huffman coding and Binary coding to enhance the crypto benefits for the information transmitted over D2D channel that consists of several public devices. The dual-crypto nature of the proposed algorithm offers higher efficiency, better security and improved key transmission.  Thus, the proposed hybrid cryptographic approach is robust in nature while easy and simple to operate. In addition, the proposed approach could recover the original information without any distortion from the encrypted data making the approach lossless in nature. Further simulation results prove that the proposed offers confidentiality to the transmitted to data while addressing the network capacity crunch

    Spectral, Energy and Computation Efficiency in Future 5G Wireless Networks

    Get PDF
    Wireless technology has revolutionized the way people communicate. From first generation, or 1G, in the 1980s to current, largely deployed 4G in the 2010s, we have witnessed not only a technological leap, but also the reformation of associated applications. It is expected that 5G will become commercially available in 2020. 5G is driven by ever-increasing demands for high mobile traffic, low transmission delay, and massive numbers of connected devices. Today, with the popularity of smart phones, intelligent appliances, autonomous cars, and tablets, communication demands are higher than ever, especially when it comes to low-cost and easy-access solutions. Existing communication architecture cannot fulfill 5G’s needs. For example, 5G requires connection speeds up to 1,000 times faster than current technology can provide. Also, from transmitter side to receiver side, 5G delays should be less than 1ms, while 4G targets a 5ms delay speed. To meet these requirements, 5G will apply several disruptive techniques. We focus on two of them: new radio and new scheme. As for the former, we study the non-orthogonal multiple access (NOMA) and as for the latter, we use mobile edge computing (MEC). Traditional communication systems allow users to communicate alternatively, which clearly avoids inter-user interference, but also caps the connection speed. NOMA, on the other hand, allows multiple users to transmit simultaneously. While NOMA will inevitably cause excessive interference, we prove such interference can be mitigated by an advanced receiver side technique. NOMA has existed on the research frontier since 2013. Since that time, both academics and industry professionals have extensively studied its performance. In this dissertation, our contribution is to incorporate NOMA with several potential schemes, such as relay, IoT, and cognitive radio networks. Furthermore, we reviewed various limitations on NOMA and proposed a more practical model. In the second part, MEC is considered. MEC is a transformation from the previous cloud computing system. In particular, MEC leverages powerful devices nearby and instead of sending information to distant cloud servers, the transmission occurs in closer range, which can effectively reduce communication delay. In this work, we have proposed a new evaluation metric for MEC which can more effectively leverage the trade-off between the amount of computation and the energy consumed thereby. A practical communication system for wearable devices is proposed in the last part, which combines all the techniques discussed above. The challenges for wearable communication are inherent in its diverse needs, as some devices may require low speed but high reliability (factory sensors), while others may need low delay (medical devices). We have addressed these challenges and validated our findings through simulations

    Relay assisted device-to-device communication with channel uncertainty

    Get PDF
    The gains of direct communication between user equipment in a network may not be fully realised due to the separation between the user equipment and due to the fading that the channel between these user equipment experiences. In order to fully realise the gains that direct (device-to-device) communication promises, idle user equipment can be exploited to serve as relays to enforce device-to-device communication. The availability of potential relay user equipment creates a problem: a way to select the relay user equipment. Moreover, unlike infrastructure relays, user equipment are carried around by people and these users are self-interested. Thus the problem of relay selection goes beyond choosing which device to assist in relayed communication but catering for user self-interest. Another problem in wireless communication is the unavailability of perfect channel state information. This reality creates uncertainty in the channel and so in designing selection algorithms, channel uncertainty awareness needs to be a consideration. Therefore the work in this thesis considers the design of relay user equipment selection algorithms that are not only device centric but that are relay user equipment centric. Furthermore, the designed algorithms are channel uncertainty aware. Firstly, a stable matching based relay user equipment selection algorithm is put forward for underlay device-to-device communication. A channel uncertainty aware approach is proposed to cater to imperfect channel state information at the devices. The algorithm is combined with a rate based mode selection algorithm. Next, to cater to the queue state at the relay user equipment, a cross-layer selection algorithm is proposed for a twoway decode and forward relay set up. The algorithm proposed employs deterministic uncertainty constraint in the interference channel, solving the selection algorithm in a heuristic fashion. Then a cluster head selection algorithm is proposed for device-to-device group communication constrained by channel uncertainty in the interference channel. The formulated rate maximization problem is solved for deterministic and probabilistic constraint scenarios, and the problem extended to a multiple-input single-out scenario for which robust beamforming was designed. Finally, relay utility and social distance based selection algorithms are proposed for full duplex decode and forward device-to-device communication set up. A worst-case approach is proposed for a full channel uncertainty scenario. The results from computer simulations indicate that the proposed algorithms offer spectral efficiency, fairness and energy efficiency gains. The results also showed clearly the deterioration in the performance of networks when perfect channel state information is assumed
    • …
    corecore