496 research outputs found

    TransCODE: Co-design of Transformers and Accelerators for Efficient Training and Inference

    Full text link
    Automated co-design of machine learning models and evaluation hardware is critical for efficiently deploying such models at scale. Despite the state-of-the-art performance of transformer models, they are not yet ready for execution on resource-constrained hardware platforms. High memory requirements and low parallelizability of the transformer architecture exacerbate this problem. Recently-proposed accelerators attempt to optimize the throughput and energy consumption of transformer models. However, such works are either limited to a one-sided search of the model architecture or a restricted set of off-the-shelf devices. Furthermore, previous works only accelerate model inference and not training, which incurs substantially higher memory and compute resources, making the problem even more challenging. To address these limitations, this work proposes a dynamic training framework, called DynaProp, that speeds up the training process and reduces memory consumption. DynaProp is a low-overhead pruning method that prunes activations and gradients at runtime. To effectively execute this method on hardware for a diverse set of transformer architectures, we propose ELECTOR, a framework that simulates transformer inference and training on a design space of accelerators. We use this simulator in conjunction with the proposed co-design technique, called TransCODE, to obtain the best-performing models with high accuracy on the given task and minimize latency, energy consumption, and chip area. The obtained transformer-accelerator pair achieves 0.3% higher accuracy than the state-of-the-art pair while incurring 5.2×\times lower latency and 3.0×\times lower energy consumption

    SPEC2: SPECtral SParsE CNN Accelerator on FPGAs

    Full text link
    To accelerate inference of Convolutional Neural Networks (CNNs), various techniques have been proposed to reduce computation redundancy. Converting convolutional layers into frequency domain significantly reduces the computation complexity of the sliding window operations in space domain. On the other hand, weight pruning techniques address the redundancy in model parameters by converting dense convolutional kernels into sparse ones. To obtain high-throughput FPGA implementation, we propose SPEC2 -- the first work to prune and accelerate spectral CNNs. First, we propose a systematic pruning algorithm based on Alternative Direction Method of Multipliers (ADMM). The offline pruning iteratively sets the majority of spectral weights to zero, without using any handcrafted heuristics. Then, we design an optimized pipeline architecture on FPGA that has efficient random access into the sparse kernels and exploits various dimensions of parallelism in convolutional layers. Overall, SPEC2 achieves high inference throughput with extremely low computation complexity and negligible accuracy degradation. We demonstrate SPEC2 by pruning and implementing LeNet and VGG16 on the Xilinx Virtex platform. After pruning 75% of the spectral weights, SPEC2 achieves 0% accuracy loss for LeNet, and <1% accuracy loss for VGG16. The resulting accelerators achieve up to 24x higher throughput, compared with the state-of-the-art FPGA implementations for VGG16.Comment: This is a 10-page conference paper in 26TH IEEE International Conference On High Performance Computing, Data, and Analytics (HiPC
    • …
    corecore