4 research outputs found

    ๋ฉ”๋ชจ๋ฆฌ ์ธํ„ฐํŽ˜์ด์Šค๋ฅผ ์œ„ํ•œ ๋ฉ€ํ‹ฐ ๋ ˆ๋ฒจ ๋‹จ์ผ ์ข…๋‹จ ์†ก์‹ ๊ธฐ ์„ค๊ณ„

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์ „๊ธฐยท์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€, 2020. 8. ๊น€์ˆ˜ํ™˜.๋ณธ ์—ฐ๊ตฌ์—์„œ ๋ฉ”๋ชจ๋ฆฌ ์ธํ„ฐํŽ˜์ด์Šค๋ฅผ ์œ„ํ•œ ๋ฉ€ํ‹ฐ ๋ ˆ๋ฒจ ์†ก์‹ ๊ธฐ๊ฐ€ ์ œ์‹œ๋˜์—ˆ๋‹ค. ํ”„๋กœ์„ธ์„œ์™€ ๋ฉ”๋ชจ๋ฆฌ ๊ฐ„์˜ ์„ฑ๋Šฅ ์ฐจ์ด๊ฐ€ ๋งค๋…„ ๊ณ„์† ์ฆ๊ฐ€ํ•จ์— ๋”ฐ๋ผ, ๋ฉ”๋ชจ๋ฆฌ๋Š” ์ „์ฒด ์‹œ์Šคํ…œ์˜ ๋ณ‘๋ชฉ์ ์ด ๋˜๊ณ ์žˆ๋‹ค. ์šฐ๋ฆฌ๋Š” ๋ฉ”๋ชจ๋ฆฌ ๋Œ€์—ญํญ์„ ๋Š˜๋ฆฌ๊ธฐ ์œ„ํ•ด PAM-4 ๋‹จ์ผ ์ข…๋‹จ ์†ก์‹ ๊ธฐ๋ฅผ ์ œ์•ˆํ•˜์˜€๊ณ , ๋ฉ€ํ‹ฐ ๋žญํฌ ๋ฉ”๋ชจ๋ฆฌ๋ฅผ ์œ„ํ•œ duobinary ๋‹จ์ผ ์ข…๋‹จ ์†ก์‹ ๊ธฐ๋ฅผ ์ œ์•ˆํ•˜์˜€๋‹ค. ์ œ์•ˆ๋œ PAM-4 ์†ก์‹ ๊ธฐ์˜ ๋“œ๋ผ์ด๋ฒ„๋Š” ๋†’์€ ์„ ํ˜•์„ฑ๊ณผ ์ž„ํ”ผ๋˜์Šค ์ •ํ•ฉ์„ ๋™์‹œ์— ๋งŒ์กฑํ•œ๋‹ค. ๋˜ํ•œ ์ €ํ•ญ์ด๋‚˜ ์ธ๋•ํ„ฐ๋ฅผ ์‚ฌ์šฉํ•˜์ง€ ์•Š์•„ ์ž‘์€ ๋ฉด์ ์„ ์ฐจ์ง€ํ•œ๋‹ค. ์ œ์•ˆ๋œ ZQ ์บ˜๋ฆฌ๋ธŒ๋ ˆ์ด์…˜์€ ์„ธ๊ฐœ์˜ ๊ต์ • ์ ์„ ๊ฐ€์ง€๊ณ  ์žˆ์–ด ์†ก์‹ ๊ธฐ๊ฐ€ ์ •ํ™•ํ•œ ์ž„ํ”ผ๋˜์Šค์™€ ์„ ํ˜•์ ์ธ ์ถœ๋ ฅ์„ ๊ฐ–๊ฒŒ ํ•œ๋‹ค. ํ”„๋กœํ†  ํƒ€์ž…์€ 65nm CMOS ๊ณต์ •์œผ๋กœ ์ œ์ž‘๋˜์—ˆ๊ณ  ์†ก์‹ ๊ธฐ๋Š” 0.0333mm2์˜ ๋ฉด์ ์„ ์ฐจ์ง€ํ•œ๋‹ค. ์ธก์ •๋œ 28Gb/s์—์„œ์˜ eye๋Š” 18.3ps์˜ ๊ธธ์ด์™€ 42.4mV์˜ ๋†’์ด๋ฅผ ๊ฐ–๊ณ , ์—๋„ˆ์ง€ ํšจ์œจ์€ 0.64pJ/bit์ด๋‹ค. ZQ ์บ˜๋ฆฌ๋ธŒ๋ ˆ์ด์…˜๊ณผ ํ•จ๊ป˜ ์ธก์ •๋œ RLM์€ 0.993์ด๋‹ค. ๋ฉ”๋ชจ๋ฆฌ์˜ ์šฉ๋Ÿ‰์„ ๋Š˜๋ฆฌ๊ธฐ ์œ„ํ•ด ํ•˜๋‚˜์˜ ํŒจํ‚ค์ง€์— ์—ฌ๋Ÿฌ ๊ฐœ์˜ DRAM ๋‹ค์ด๋ฅผ ์ˆ˜์ง์œผ๋กœ ์Œ“๋Š” ํŒจํ‚ค์ง•์€ ๋ฉ”๋ชจ๋ฆฌ์˜ ์ค‘์•™ ํŒจ๋“œ ๊ตฌ์กฐ์™€ ๊ฒฐํ•ฉ๋˜์–ด ์งง์€ ๋ฐ˜์‚ฌ๋ฅผ ์•ผ๊ธฐํ•˜๋Š” ์Šคํ…์„ ๋งŒ๋“ ๋‹ค. ์šฐ๋ฆฌ๋Š” ์ด ๋ฌธ์ œ๋ฅผ ์™„ํ™”ํ•˜๊ธฐ์œ„ํ•ด ๋ฐ˜์‚ฌ ๊ธฐ๋ฐ˜ duobinary ์†ก์‹ ๊ธฐ๋ฅผ ์ œ์•ˆํ–ˆ๋‹ค. ์ด ์†ก์‹ ๊ธฐ๋Š” ๋ฐ˜์‚ฌ๋ฅผ ์ด์šฉํ•˜์—ฌ duobinary signaling์„ ํ•œ๋‹ค. 2ํƒญ ๋ฐ˜๋Œ€ ๊ฐ•์กฐ ๊ธฐ์ˆ ๊ณผ ์Šฌ๋ฃจ ๋ ˆ์ดํŠธ ์กฐ์ ˆ ๊ธฐ์ˆ ์ด ์‹ ํ˜ธ ์™„๊ฒฐ์„ฑ์„ ๋†’์ด๊ธฐ ์œ„ํ•ด ์‚ฌ์šฉ๋˜์—ˆ๋‹ค. NRZ eye๊ฐ€ ์—†๋Š” 10Gb/s์—์„œ ์ธก์ •๋œ duobinary eye๋Š” 63.6ps ๊ธธ์ด์™€ 70.8mV์˜ ๋†’์ด๋ฅผ ๊ฐ–๋Š”๋‹ค. ์ธก์ •๋œ ์—๋„ˆ์ง€ ํšจ์œจ์€ 1.38pJ/bit์ด๋‹ค.Multi-level transmitters for memory interfaces have been presented. The performance gap between processor and memory has been increased by 50% every year, making memory to be a bottle neck of the overall system. To increase memory bandwidth, we have proposed a PAM-4 single-ended transmitter. To compensate for the side effect of the multi-rank memory, we have proposed a reflection-based duobinary transmitter. The proposed PAM-4 transmitter has the driver, which simultaneously satisfies impedance matching and high linearity. The driver occupies a small area due to a resistorless and inductorless structure. The proposed ZQ calibration for PAM-4 has three calibration points, which allow the transmitter to have accurate impedance and linear output. The ZQ calibration considers impedance variation of both the driver and the receiver. A prototype has been fabricated in 65nm CMOS process, and the transmitter occupies 0.0333mm2. The measured eye has a width of 18.3ps and a height of 42.4mV at 28Gb/s, and the measured energy efficiency is 0.64pJ/b. The measured RLM with the 3-point ZQ calibration is 0.993. To increase memory density, the stacked die packaging with multiple DRAM die stacked vertically in one package is widely used. However, combined with the center-pad structure, the structure creates stubs that cause short reflections. We have proposed the reflection-based duobinary transmitter to mitigate this problem. The proposed transmitter uses reflection for duobinary signaling. The 2-tap opposite FFE and the slew-rate control are used to increase signal integrity. The measured duobinary eye at 10Gb/s has a width of 63.6ps and a height of 70.8mV while there is no NRZ eye opening. The measured energy efficiency is 1.38pJ/bit.CHAPTER 1 INTRODUCTION 1 1.1 MOTIVATION 1 1.2 THESIS ORGANIZATION 8 CHAPTER 2 MUTI-LEVEL SIGNALING 9 2.1 PAM-4 SIGNALING 9 2.2 DESIGN CONSIDERATIONS FOR PAM-4 TRANSMITTER 16 2.2.1 LEVEL SEPARATION MISMATCH RATIO (RLM) 17 2.2.2 IMPEDANCE MATCHING 19 2.2.3 PRIOR ARTS 21 2.3 DUOBINARY SIGNALING 24 CHAPTER 3 HIGH-LINEARITY AND IMPEDANCE-MATCHED PAM-4 TRANSMITTER 30 3.1 OVERALL ARCHITECTURE 31 3.2 SINGLE-ENDED IMPEDANCE-MATCHED PAM-4 DRIVER 33 3.3 3-POINT ZQ CALIBRATION FOR PAM-4 47 CHAPTER 4 REFLECTION-BASED DUOBINARY TRANSMITTER 57 4.1 BIDIRECTIONAL DUAL-RANK MEMORY SYSTEM 58 4.2 CONCEPT OF REFLECTION-BASED DUOBINARY SIGNALING 66 4.3 REFLECTION-BASED DUOBINARY TRANSMITTER 70 4.3.1 OVERALL ARCHITECTURE 70 4.3.2 EQUALIZATION FOR REFLECTION-BASED DUOBINARY SIGNALING 72 4.3.3 2D BINARY-SEGMENTED DRIVER 75 CHAPTER 5 EXPERIMENTAL RESULTS 77 5.1 HIGH-LINEARITY AND IMPEDANCE-MATCHED PAM-4 TRANSMITTER 77 5.2 REFLECTION-BASED DUOBINARY TRANSMITTER 84 CHAPTER 6 92 CONCLUSION 92 BIBLIOGRAPHY 94Docto

    Doctor of Philosophy

    Get PDF
    dissertationCommunication surpasses computation as the power and performance bottleneck in forthcoming exascale processors. Scaling has made transistors cheap, but on-chip wires have grown more expensive, both in terms of latency as well as energy. Therefore, the need for low energy, high performance interconnects is highly pronounced, especially for long distance communication. In this work, we examine two aspects of the global signaling problem. The first part of the thesis focuses on a high bandwidth asynchronous signaling protocol for long distance communication. Asynchrony among intellectual property (IP) cores on a chip has become necessary in a System on Chip (SoC) environment. Traditional asynchronous handshaking protocol suffers from loss of throughput due to the added latency of sending the acknowledge signal back to the sender. We demonstrate a method that supports end-to-end communication across links with arbitrarily large latency, without limiting the bandwidth, so long as line variation can be reliably controlled. We also evaluate the energy and latency improvements as a result of the design choices made available by this protocol. The use of transmission lines as a physical interconnect medium shows promise for deep submicron technologies. In our evaluations, we notice a lower energy footprint, as well as vastly reduced wire latency for transmission line interconnects. We approach this problem from two sides. Using field solvers, we investigate the physical design choices to determine the optimal way to implement these lines for a given back-end-of-line (BEOL) stack. We also approach the problem from a system designer's viewpoint, looking at ways to optimize the lines for different performance targets. This work analyzes the advantages and pitfalls of implementing asynchronous channel protocols for communication over long distances. Finally, the innovations resulting from this work are applied to a network-on-chip design example and the resulting power-performance benefits are reported

    Radio Communications

    Get PDF
    In the last decades the restless evolution of information and communication technologies (ICT) brought to a deep transformation of our habits. The growth of the Internet and the advances in hardware and software implementations modi๏ฌed our way to communicate and to share information. In this book, an overview of the major issues faced today by researchers in the ๏ฌeld of radio communications is given through 35 high quality chapters written by specialists working in universities and research centers all over the world. Various aspects will be deeply discussed: channel modeling, beamforming, multiple antennas, cooperative networks, opportunistic scheduling, advanced admission control, handover management, systems performance assessment, routing issues in mobility conditions, localization, web security. Advanced techniques for the radio resource management will be discussed both in single and multiple radio technologies; either in infrastructure, mesh or ad hoc networks

    A mixed-signal ASIC for time and charge measurements with GEM detectors

    Get PDF
    L'abstract รจ presente nell'allegato / the abstract is in the attachmen
    corecore