228 research outputs found

    Beamforming and Power Splitting Designs for AN-aided Secure Multi-user MIMO SWIPT Systems

    Full text link
    In this paper, an energy harvesting scheme for a multi-user multiple-input-multiple-output (MIMO) secrecy channel with artificial noise (AN) transmission is investigated. Joint optimization of the transmit beamforming matrix, the AN covariance matrix, and the power splitting ratio is conducted to minimize the transmit power under the target secrecy rate, the total transmit power, and the harvested energy constraints. The original problem is shown to be non-convex, which is tackled by a two-layer decomposition approach. The inner layer problem is solved through semi-definite relaxation, and the outer problem, on the other hand, is shown to be a single- variable optimization that can be solved by one-dimensional (1- D) line search. To reduce computational complexity, a sequential parametric convex approximation (SPCA) method is proposed to find a near-optimal solution. The work is then extended to the imperfect channel state information case with norm-bounded channel errors. Furthermore, tightness of the relaxation for the proposed schemes are validated by showing that the optimal solution of the relaxed problem is rank-one. Simulation results demonstrate that the proposed SPCA method achieves the same performance as the scheme based on 1-D but with much lower complexity.Comment: 12 pages, 6 figures, submitted for possible publicatio

    Energy Efficiency Optimization for a Multiuser IRS-aided MISO System with SWIPT

    Get PDF
    Combining simultaneous wireless information and power transfer (SWIPT) and an intelligent reflecting surface (IRS) is a feasible scheme to enhance energy efficiency (EE) performance. In this paper, we investigate a multiuser IRS-aided multiple-input single-output (MISO) system with SWIPT. For the purpose of maximizing the EE of the system, we jointly optimize the base station (BS) transmit beamforming vectors, the IRS reflective beamforming vector, and the power splitting (PS) ratios, while considering the maximum transmit power budget, the IRS reflection constraints, and the quality of service (QoS) requirements containing the minimum data rate and the minimum harvested energy of each user. The formulated EE maximization problem is non-convex and extremely complex. To tackle it, we develop an efficient alternating optimization (AO) algorithm by decoupling the original nonconvex problem into three subproblems, which are solved iteratively by using the Dinkelbach method. In particular, we apply the successive convex approximation (SCA) as well as the semi-definite relaxation (SDR) techniques to solve the non-convex transmit beamforming and reflective beamforming optimization subproblems. Simulation results verify the effectiveness of the AO algorithm as well as the benefit of deploying IRS for enhancing the EE performance compared with the benchmark schemes
    • …
    corecore