959 research outputs found

    Experimental evaluation of UWB indoor positioning for indoor track cycling

    Get PDF
    Accurate radio frequency (RF)-based indoor localization systems are more and more applied during sports. The most accurate RF-based localization systems use ultra-wideband (UWB) technology; this is why this technology is the most prevalent. UWB positioning systems allow for an in-depth analysis of the performance of athletes during training and competition. There is no research available that investigates the feasibility of UWB technology for indoor track cycling. In this paper, we investigate the optimal position to mount the UWB hardware for that specific use case. Different positions on the bicycle and cyclist were evaluated based on accuracy, received power level, line-of-sight, maximum communication range, and comfort. Next to this, the energy consumption of our UWB system was evaluated. We found that the optimal hardware position was the lower back, with a median ranging error of 22 cm (infrastructure hardware placed at 2.3 m). The energy consumption of our UWB system is also taken into account. Applied to our setup with the hardware mounted at the lower back, the maximum communication range varies between 32.6 m and 43.8 m. This shows that UWB localization systems are suitable for indoor positioning of track cyclists

    Low power energy harvesting and storage techniques from ambient human powered energy sources

    Get PDF
    Conventional electrochemical batteries power most of the portable and wireless electronic devices that are operated by electric power. In the past few years, electrochemical batteries and energy storage devices have improved significantly. However, this progress has not been able to keep up with the development of microprocessors, memory storage, and sensors of electronic applications. Battery weight, lifespan and reliability often limit the abilities and the range of such applications of battery powered devices. These conventional devices were designed to be powered with batteries as required, but did not allow scavenging of ambient energy as a power source. In contrast, development in wireless technology and other electronic components are constantly reducing the power and energy needed by many applications. If energy requirements of electronic components decline reasonably, then ambient energy scavenging and conversion could become a viable source of power for many applications. Ambient energy sources can be then considered and used to replace batteries in some electronic applications, to minimize product maintenance and operating cost. The potential ability to satisfy overall power and energy requirements of an application using ambient energy can eliminate some constraints related to conventional power supplies. Also power scavenging may enable electronic devices to be completely self-sustaining so that battery maintenance can eventually be eliminated. Furthermore, ambient energy scavenging could extend the performance and the lifetime of the MEMS (Micro electromechanical systems) and portable electronic devices. These possibilities show that it is important to examine the effectiveness of ambient energy as a source of power. Until recently, only little use has been made of ambient energy resources, especially for wireless networks and portable power devices. Recently, researchers have performed several studies in alternative energy sources that could provide small amounts of electricity to low-power electronic devices. These studies were focused to investigate and obtain power from different energy sources, such as vibration, light, sound, airflow, heat, waste mechanical energy and temperature variations. This research studied forms of ambient energy sources such as waste mechanical (rotational) energy from hydraulic door closers, and fitness exercise bicycles, and its conversion and storage into usable electrical energy. In both of these examples of applications, hydraulic door closers and fitness exercise bicycles, human presence is required. A person has to open the door in order for the hydraulic door closer mechanism to function. Fitness exercise bicycles need somebody to cycle the pedals to generate electricity (while burning calories.) Also vibrations, body motions, and compressions from human interactions were studied using small piezoelectric fiber composites which are capable of recovering waste mechanical energy and converting it to useful electrical energy. Based on ambient energy sources, electrical energy conversion and storage circuits were designed and tested for low power electronic applications. These sources were characterized according to energy harvesting (scavenging) methods, and power and energy density. At the end of the study, the ambient energy sources were matched with possible electronic applications as a viable energy source

    Portable Bio-Devices: Design of Electrochemical Instruments from Miniaturized to Implantable Devices

    Get PDF
    The integration of biosensors and electronic technologies allows the development of biomedical systems able to diagnose and monitoring pathologies by detecting specific biomarkers. The chapter presents the main modules involved in the development of such devices, generically represented in Fig. 1, and focuses its attention on the essential components of these systems to address questions such as: how is the device powered? How does it communicate the measured data? What kind of sensors could be used?, and What kinds of electronics are used

    Smart Devices and Systems for Wearable Applications

    Get PDF
    Wearable technologies need a smooth and unobtrusive integration of electronics and smart materials into textiles. The integration of sensors, actuators and computing technologies able to sense, react and adapt to external stimuli, is the expression of a new generation of wearable devices. The vision of wearable computing describes a system made by embedded, low power and wireless electronics coupled with smart and reliable sensors - as an integrated part of textile structure or directly in contact with the human body. Therefore, such system must maintain its sensing capabilities under the demand of normal clothing or textile substrate, which can impose severe mechanical deformation to the underlying garment/substrate. The objective of this thesis is to introduce a novel technological contribution for the next generation of wearable devices adopting a multidisciplinary approach in which knowledge of circuit design with Ultra-Wide Band and Bluetooth Low Energy technology, realization of smart piezoresistive / piezocapacitive and electro-active material, electro-mechanical characterization, design of read-out circuits and system integration find a fundamental and necessary synergy. The context and the results presented in this thesis follow an “applications driven” method in terms of wearable technology. A proof of concept has been designed and developed for each addressed issue. The solutions proposed are aimed to demonstrate the integration of a touch/pressure sensor into a fabric for space debris detection (CApture DEorbiting Target project), the effectiveness of the Ultra-Wide Band technology as an ultra-low power data transmission option compared with well known Bluetooth (IR-UWB data transmission project) and to solve issues concerning human proximity estimation (IR-UWB Face-to-Face Interaction and Proximity Sensor), wearable actuator for medical applications (EAPtics project) and aerospace physiology countermeasure (Gravity Loading Countermeasure Skinsuit project)

    Low-profile antenna systems for the Next-Generation Internet of Things applications

    Get PDF

    An Open Source and Open Hardware Deep Learning-Powered Visual Navigation Engine for Autonomous Nano-UAVs

    Get PDF
    Nano-size unmanned aerial vehicles (UAVs), with few centimeters of diameter and sub-10 Watts of total power budget, have so far been considered incapable of running sophisticated visual-based autonomous navigation software without external aid from base-stations, ad-hoc local positioning infrastructure, and powerful external computation servers. In this work, we present what is, to the best of our knowledge, the first 27g nano-UAV system able to run aboard an end-to-end, closed-loop visual pipeline for autonomous navigation based on a state-of-the-art deep-learning algorithm, built upon the open-source CrazyFlie 2.0 nano-quadrotor. Our visual navigation engine is enabled by the combination of an ultra-low power computing device (the GAP8 system-on-chip) with a novel methodology for the deployment of deep convolutional neural networks (CNNs). We enable onboard real-time execution of a state-of-the-art deep CNN at up to 18Hz. Field experiments demonstrate that the system's high responsiveness prevents collisions with unexpected dynamic obstacles up to a flight speed of 1.5m/s. In addition, we also demonstrate the capability of our visual navigation engine of fully autonomous indoor navigation on a 113m previously unseen path. To share our key findings with the embedded and robotics communities and foster further developments in autonomous nano-UAVs, we publicly release all our code, datasets, and trained networks

    Cryptography for Ultra-Low Power Devices

    Get PDF
    Ubiquitous computing describes the notion that computing devices will be everywhere: clothing, walls and floors of buildings, cars, forests, deserts, etc. Ubiquitous computing is becoming a reality: RFIDs are currently being introduced into the supply chain. Wireless distributed sensor networks (WSN) are already being used to monitor wildlife and to track military targets. Many more applications are being envisioned. For most of these applications some level of security is of utmost importance. Common to WSN and RFIDs are their severely limited power resources, which classify them as ultra-low power devices. Early sensor nodes used simple 8-bit microprocessors to implement basic communication, sensing and computing services. Security was an afterthought. The main power consumer is the RF-transceiver, or radio for short. In the past years specialized hardware for low-data rate and low-power radios has been developed. The new bottleneck are security services which employ computationally intensive cryptographic operations. Customized hardware implementations hold the promise of enabling security for severely power constrained devices. Most research groups are concerned with developing secure wireless communication protocols, others with designing efficient software implementations of cryptographic algorithms. There has not been a comprehensive study on hardware implementations of cryptographic algorithms tailored for ultra-low power applications. The goal of this dissertation is to develop a suite of cryptographic functions for authentication, encryption and integrity that is specifically fashioned to the needs of ultra-low power devices. This dissertation gives an introduction to the specific problems that security engineers face when they try to solve the seemingly contradictory challenge of providing lightweight cryptographic services that can perform on ultra-low power devices and shows an overview of our current work and its future direction

    Advances on Smart Cities and Smart Buildings

    Get PDF
    Modern cities are facing the challenge of combining competitiveness at the global city scale and sustainable urban development to become smart cities. A smart city is a high-tech, intensive and advanced city that connects people, information, and city elements using new technologies in order to create a sustainable, greener city; competitive and innovative commerce; and an increased quality of life. This Special Issue collects the recent advancements in smart cities and covers different topics and aspects
    corecore