2,333 research outputs found

    Decentralized Computation Offloading for Multi-User Mobile Edge Computing: A Deep Reinforcement Learning Approach

    Full text link
    Mobile edge computing (MEC) emerges recently as a promising solution to relieve resource-limited mobile devices from computation-intensive tasks, which enables devices to offload workloads to nearby MEC servers and improve the quality of computation experience. Nevertheless, by considering a MEC system consisting of multiple mobile users with stochastic task arrivals and wireless channels in this paper, the design of computation offloading policies is challenging to minimize the long-term average computation cost in terms of power consumption and buffering delay. A deep reinforcement learning (DRL) based decentralized dynamic computation offloading strategy is investigated to build a scalable MEC system with limited feedback. Specifically, a continuous action space-based DRL approach named deep deterministic policy gradient (DDPG) is adopted to learn efficient computation offloading policies independently at each mobile user. Thus, powers of both local execution and task offloading can be adaptively allocated by the learned policies from each user's local observation of the MEC system. Numerical results are illustrated to demonstrate that efficient policies can be learned at each user, and performance of the proposed DDPG based decentralized strategy outperforms the conventional deep Q-network (DQN) based discrete power control strategy and some other greedy strategies with reduced computation cost. Besides, the power-delay tradeoff is also analyzed for both the DDPG based and DQN based strategies

    Energy-Efficient Joint Offloading and Wireless Resource Allocation Strategy in Multi-MEC Server Systems

    Full text link
    Mobile edge computing (MEC) is an emerging paradigm that mobile devices can offload the computation-intensive or latency-critical tasks to the nearby MEC servers, so as to save energy and extend battery life. Unlike the cloud server, MEC server is a small-scale data center deployed at a wireless access point, thus it is highly sensitive to both radio and computing resource. In this paper, we consider an Orthogonal Frequency-Division Multiplexing Access (OFDMA) based multi-user and multi-MEC-server system, where the task offloading strategies and wireless resources allocation are jointly investigated. Aiming at minimizing the total energy consumption, we propose the joint offloading and resource allocation strategy for latency-critical applications. Through the bi-level optimization approach, the original NP-hard problem is decoupled into the lower-level problem seeking for the allocation of power and subcarrier and the upper-level task offloading problem. Simulation results show that the proposed algorithm achieves excellent performance in energy saving and successful offloading probability (SOP) in comparison with conventional schemes.Comment: 6 pages, 5 figures, to appear in IEEE ICC 2018, May 20-2

    Optimal Task Offloading and Resource Allocation in Mobile-Edge Computing with Inter-user Task Dependency

    Full text link
    Mobile-edge computing (MEC) has recently emerged as a cost-effective paradigm to enhance the computing capability of hardware-constrained wireless devices (WDs). In this paper, we first consider a two-user MEC network, where each WD has a sequence of tasks to execute. In particular, we consider task dependency between the two WDs, where the input of a task at one WD requires the final task output at the other WD. Under the considered task-dependency model, we study the optimal task offloading policy and resource allocation (e.g., on offloading transmit power and local CPU frequencies) that minimize the weighted sum of the WDs' energy consumption and task execution time. The problem is challenging due to the combinatorial nature of the offloading decisions among all tasks and the strong coupling with resource allocation. To tackle this problem, we first assume that the offloading decisions are given and derive the closed-form expressions of the optimal offloading transmit power and local CPU frequencies. Then, an efficient bi-section search method is proposed to obtain the optimal solutions. Furthermore, we prove that the optimal offloading decisions follow an one-climb policy, based on which a reduced-complexity Gibbs Sampling algorithm is proposed to obtain the optimal offloading decisions. We then extend the investigation to a general multi-user scenario, where the input of a task at one WD requires the final task outputs from multiple other WDs. Numerical results show that the proposed method can significantly outperform the other representative benchmarks and efficiently achieve low complexity with respect to the call graph size.Comment: This paper has been accepted for publication in IEEE Transactions on Wireless Communication

    Exploiting Computation Replication for Mobile Edge Computing: A Fundamental Computation-Communication Tradeoff Study

    Full text link
    Existing works on task offloading in mobile edge computing (MEC) networks often assume a task is executed once at a single edge node (EN). Downloading the computed result from the EN back to the mobile user may suffer long delay if the downlink channel experiences strong interference or deep fading. This paper exploits the idea of computation replication in MEC networks to speed up the downloading phase. Computation replication allows each user to offload its task to multiple ENs for repetitive execution so as to create multiple copies of the computed result at different ENs which can then enable transmission cooperation and hence reduce the communication latency for result downloading. Yet, computation replication may also increase the communication latency for task uploading, despite the obvious increase in computation load. The main contribution of this work is to characterize asymptotically an order-optimal upload-download communication latency pair for a given computation load in a multi-user multi-server MEC network. Analysis shows when the computation load increases within a certain range, the downloading time decreases in an inversely proportional way if it is binary offloading or decreases linearly if it is partial offloading, both at the expense of linear increase in the uploading time.Comment: To appear in IEEE Transactions on Wireless Communication

    Base Station ON-OFF Switching in 5G Wireless Networks: Approaches and Challenges

    Full text link
    To achieve the expected 1000x data rates under the exponential growth of traffic demand, a large number of base stations (BS) or access points (AP) will be deployed in the fifth generation (5G) wireless systems, to support high data rate services and to provide seamless coverage. Although such BSs are expected to be small-scale with lower power, the aggregated energy consumption of all BSs would be remarkable, resulting in increased environmental and economic concerns. In existing cellular networks, turning off the under-utilized BSs is an efficient approach to conserve energy while preserving the quality of service (QoS) of mobile users. However, in 5G systems with new physical layer techniques and the highly heterogeneous network architecture, new challenges arise in the design of BS ON-OFF switching strategies. In this article, we begin with a discussion on the inherent technical challenges of BS ON-OFF switching. We then provide a comprehensive review of recent advances on switching mechanisms in different application scenarios. Finally, we present open research problems and conclude the paper.Comment: Appear to IEEE Wireless Communications, 201

    Multi-Antenna NOMA for Computation Offloading in Multiuser Mobile Edge Computing Systems

    Full text link
    This paper studies a multiuser mobile edge computing (MEC) system, in which one base station (BS) serves multiple users with intensive computation tasks. We exploit the multi-antenna non-orthogonal multiple access (NOMA) technique for multiuser computation offloading, such that different users can simultaneously offload their computation tasks to the multi-antenna BS over the same time/frequency resources, and the BS can employ successive interference cancellation (SIC) to efficiently decode all users' offloaded tasks for remote execution. We aim to minimize the weighted sum-energy consumption at all users subject to their computation latency constraints, by jointly optimizing the communication and computation resource allocation as well as the BS's decoding order for SIC. For the case with partial offloading, the weighted sum-energy minimization is a convex optimization problem, for which an efficient algorithm based on the Lagrange duality method is presented to obtain the globally optimal solution. For the case with binary offloading, the weighted sum-energy minimization corresponds to a {\em mixed Boolean convex problem} that is generally more difficult to be solved. We first use the branch-and-bound (BnB) method to obtain the globally optimal solution, and then develop two low-complexity algorithms based on the greedy method and the convex relaxation, respectively, to find suboptimal solutions with high quality in practice. Via numerical results, it is shown that the proposed NOMA-based computation offloading design significantly improves the energy efficiency of the multiuser MEC system as compared to other benchmark schemes. It is also shown that for the case with binary offloading, the proposed greedy method performs close to the optimal BnB based solution, and the convex relaxation based solution achieves a suboptimal performance but with lower implementation complexity.Comment: 33 pages, 12 figures, as well as correcting the typos in equations (4) and (5) in the previous versio

    Fundamental Green Tradeoffs: Progresses, Challenges, and Impacts on 5G Networks

    Full text link
    With years of tremendous traffic and energy consumption growth, green radio has been valued not only for theoretical research interests but also for the operational expenditure reduction and the sustainable development of wireless communications. Fundamental green tradeoffs, served as an important framework for analysis, include four basic relationships: spectrum efficiency (SE) versus energy efficiency (EE), deployment efficiency (DE) versus energy efficiency (EE), delay (DL) versus power (PW), and bandwidth (BW) versus power (PW). In this paper, we first provide a comprehensive overview on the extensive on-going research efforts and categorize them based on the fundamental green tradeoffs. We will then focus on research progresses of 4G and 5G communications, such as orthogonal frequency division multiplexing (OFDM) and non-orthogonal aggregation (NOA), multiple input multiple output (MIMO), and heterogeneous networks (HetNets). We will also discuss potential challenges and impacts of fundamental green tradeoffs, to shed some light on the energy efficient research and design for future wireless networks.Comment: revised from IEEE Communications Surveys & Tutorial

    Computation Efficiency Maximization in Wireless-Powered Mobile Edge Computing Networks

    Full text link
    Energy-efficient computation is an inevitable trend for mobile edge computing (MEC) networks. Resource allocation strategies for maximizing the computation efficiency are critically important. In this paper, computation efficiency maximization problems are formulated in wireless-powered MEC networks under both partial and binary computation offloading modes. A practical non-linear energy harvesting model is considered. Both time division multiple access (TDMA) and non-orthogonal multiple access (NOMA) are considered and evaluated for offloading. The energy harvesting time, the local computing frequency, and the offloading time and power are jointly optimized to maximize the computation efficiency under the max-min fairness criterion. Two iterative algorithms and two alternative optimization algorithms are respectively proposed to address the non-convex problems formulated in this paper. Simulation results show that the proposed resource allocation schemes outperform the benchmark schemes in terms of user fairness. Moreover, a tradeoff is elucidated between the achievable computation efficiency and the total number of computed bits. Furthermore, simulation results demonstrate that the partial computation offloading mode outperforms the binary computation offloading mode and NOMA outperforms TDMA in terms of computation efficiency.Comment: This paper has been accepted for publication in IEEE Transactions on Wireless Communication

    A Vision of 6G Wireless Systems: Applications, Trends, Technologies, and Open Research Problems

    Full text link
    The ongoing deployment of 5G cellular systems is continuously exposing the inherent limitations of this system, compared to its original premise as an enabler for Internet of Everything applications. These 5G drawbacks are currently spurring worldwide activities focused on defining the next-generation 6G wireless system that can truly integrate far-reaching applications ranging from autonomous systems to extended reality and haptics. Despite recent 6G initiatives1, the fundamental architectural and performance components of the system remain largely undefined. In this paper, we present a holistic, forward-looking vision that defines the tenets of a 6G system. We opine that 6G will not be a mere exploration of more spectrum at high-frequency bands, but it will rather be a convergence of upcoming technological trends driven by exciting, underlying services. In this regard, we first identify the primary drivers of 6G systems, in terms of applications and accompanying technological trends. Then, we propose a new set of service classes and expose their target 6G performance requirements. We then identify the enabling technologies for the introduced 6G services and outline a comprehensive research agenda that leverages those technologies. We conclude by providing concrete recommendations for the roadmap toward 6G. Ultimately, the intent of this article is to serve as a basis for stimulating more out-of-the-box research around 6G.Comment: This paper has been accepted by IEEE Networ

    Hierarchical Fog-Cloud Computing for IoT Systems: A Computation Offloading Game

    Full text link
    Fog computing, which provides low-latency computing services at the network edge, is an enabler for the emerging Internet of Things (IoT) systems. In this paper, we study the allocation of fog computing resources to the IoT users in a hierarchical computing paradigm including fog and remote cloud computing services. We formulate a computation offloading game to model the competition between IoT users and allocate the limited processing power of fog nodes efficiently. Each user aims to maximize its own quality of experience (QoE), which reflects its satisfaction of using computing services in terms of the reduction in computation energy and delay. Utilizing a potential game approach, we prove the existence of a pure Nash equilibrium and provide an upper bound for the price of anarchy. Since the time complexity to reach the equilibrium increases exponentially in the number of users, we further propose a near-optimal resource allocation mechanism and prove that in a system with NN IoT users, it can achieve an ϵ\epsilon-Nash equilibrium in O(N/ϵ)O(N/\epsilon) time. Through numerical studies, we evaluate the users' QoE as well as the equilibrium efficiency. Our results reveal that by utilizing the proposed mechanism, more users benefit from computing services in comparison to an existing offloading mechanism. We further show that our proposed mechanism significantly reduces the computation delay and enables low-latency fog computing services for delay-sensitive IoT applications
    • …
    corecore