640 research outputs found

    Multi-Objective Optimization of Microgrids Based on Recent Metaheuristic Methods

    Get PDF
    As the technology develops in the modern world, the need for electrical energy has increased. Renewable energy sources have emerged as an alternative energy source to fossil energy sources. Micro grids are the hybrid energy sources for both renewable and non-renewable energy sources. The choice of the microgrid depends on meeting the supply and low cost requirements while avoiding environmental pollution. Therefore, emission, reliability and sizing of a micro grid have been investigated in the present study. In addition, Swallow Swarm Optimization (SSO) and Hybrid Particle Swallow Swarm Optimization (HPSSO) algorithms were not found in micro grid related optimization studies. Performance of SSO and HPSSO algorithms was also evaluated. Particle Swarm Optimization (PSO), SSO, and HPSSO were adjusted in this study as multi-objective optimization method for increasing the reliability, decreasing emission and sizing energy resources of a microgrid feeding a 10 MW residence. A microgrid consisting of 8 MW solar panel, 4,5 MW wind turbine, 15 MW diesel generator, and 4 MW battery has been taken into consideration. The efficiencies of these algorithms were compared for different iterations and populations. In this study, the best results were obtained with the SSO algorithm. Loss of power supply probability (LPSP) = 0, Renewable factor (RF) = 1, with this algorithm our micro-grid has achieved a safe energy and minimum emission to feed the residence. In addition, a system that connects and disconnects the energy resources in varying load conditions was actualized with the SSO algorithm. With this algorithm LPSP = 0, RF = 1, Psize = 0,001. Maximum reliability, zero emission and minimum sizing of the energy sources in our microgrid were achieved with loads of up to 50%. Moreover, LPSP = 0.39, RF = 0.086, Psize = 0,21 values were obtained for loads 50% and above and good results were obtained for reliability, emission and sizing of energy sources

    Swarm algorithms in dynamic optimization problem of reactive power compensation units control

    Get PDF
    Optimization of a power supply system is one of the main directions in power engineering research. The reactive power compensation reduces active power losses in transmission lines. In general, researches devoted to allocation and control of the compensation units consider this issue as a static optimization problem. However, it is dynamic and stochastic optimization problem that requires a real-time solution. To solve the dynamic optimization NP-hard problem, it is advisable to use Swarm Intelligence. This research deals with the problem of the compensation units power control as a dynamic optimization problem, considering the possible stochastic failures of the compensation units. The Particle Swarm Optimization and the Bees Algorithm were applied to solve it to compare the effectiveness of these algorithms in the dynamic optimization of a power supply system

    Designing of stand-alone hybrid PV/wind/battery system using improved crow search algorithm considering reliability index

    Get PDF
    Abstract In this paper, the design of a hybrid renewable energy PV/wind/battery system is proposed for improving the load supply reliability over a study horizon considering the Net Present Cost (NPC) as the objective function to minimize. The NPC includes the costs related to the investment, replacement, operation, and maintenance of the hybrid system. The considered reliability index is the deficit power-hourly interruption probability of the load demand. The decision variables are the number of PV panels, wind turbines and batteries, capacity of transferred power by inverter, angle of PV panels, and wind tower height. To solve the optimization problem, a new algorithm named improved crow search algorithm (ICSA) is proposed. The design of the system is done for Zanjan city, Iran based on real data of solar radiation and wind speed of this area. The performance of the proposed ICSA is compared with crow search algorithm (CSA) and particle swarm optimization methods in different combinations of system. This comparison shows that the proposed ICSA algorithm has better performance than other methods

    Energy Management of Grid-Connected Microgrids, Incorporating Battery Energy Storage and CHP Systems Using Mixed Integer Linear Programming

    Get PDF
    In this thesis, an energy management system (EMS) is proposed for use with battery energy storage systems (BESS) in solar photovoltaic-based (PV-BESS) grid-connected microgrids and combined heat and power (CHP) applications. As a result, the battery's charge/discharge power is optimised so that the overall cost of energy consumed is minimised, considering the variation in grid tariff, renewable power generation and load demand. The system is modelled as an economic load dispatch optimisation problem over a 24-hour time horizon and solved using mixed integer linear programming (MILP) for the grid-connected Microgrid and the CHP application. However, this formulation requires information about the predicted renewable energy power generation and load demand over the next 24 hours. Therefore, a long short-term memory (LSTM) neural network is proposed to achieve this. The receding horizon (RH) strategy is suggested to reduce the impact of prediction error and enable real-time implementation of the energy management system (EMS) that benefits from using actual generation and demand data in real-time. At each time-step, the LSTM predicts the generation and load data for the next 24 h. The dispatch problem is then solved, and the real-time battery charging or discharging command for only the first hour is applied. Real data are then used to update the LSTM input, and the process is repeated. Simulation results using the Ushant Island as a case study show that the proposed online optimisation strategy outperforms the offline optimisation strategy (with no RH), reducing the operating cost by 6.12%. The analyses of the impact of different times of use (TOU) and standard tariff in the energy management of grid-connected microgrids as it relates to the charge/discharge cycle of the BESS and the optimal operating cost of the Microgrid using the LSTM-MILP-RH approach is evaluated. Four tariffs UK tariff schemes are considered: (1) Residential TOU tariff (RTOU), (2) Economy seven tariff (E7T), (3) Economy ten tariff (E10T), and (4) Standard tariff (STD). It was found that the RTOU tariff scheme gives the lowest operating cost, followed by the E10T tariff scheme with savings of 63.5% and 55.5%, respectively, compared to the grid-only operation. However, the RTOU and E10 tariff scheme is mainly used for residential applications with the duck curve load demand structure. For community grid-connected microgrid applications except for residential-only communities, the E7T and STD, with 54.2% and 39.9%, respectively, are the most likely options offered by energy suppliers. The use of combined heat and power (CHP) systems has recently increased due to their high combined efficiency and low emissions. Using CHP systems in behind-the-meter applications, however, can introduce some challenges. Firstly, the CHP system must operate in load-following mode to prevent power export to the grid. Secondly, if the load drops below a predefined threshold, the engine will operate at a lower temperature and hence lower efficiency, as the fuel is only half-burnt, creating significant emissions. The aforementioned issues may be solved by combining CHP with a battery energy storage system. However, the dispatch of CHP and BESS must be optimised. Offline optimisation methods based on load prediction will not prevent power export to the grid due to prediction errors. Therefore, a real-time EMS using a combination of LSTM neural networks, MILP, and RH control strategy is proposed. Simulation results show that the proposed method can prevent power export to the grid and reduce the operational cost by 8.75% compared to the offline method. The finding shows that the BESS is a valuable asset for sustainable energy transition. However, they must be operated safely to guarantee operational cost reduction and longer life for the BESS
    corecore