567 research outputs found

    A Taxonomy for Management and Optimization of Multiple Resources in Edge Computing

    Full text link
    Edge computing is promoted to meet increasing performance needs of data-driven services using computational and storage resources close to the end devices, at the edge of the current network. To achieve higher performance in this new paradigm one has to consider how to combine the efficiency of resource usage at all three layers of architecture: end devices, edge devices, and the cloud. While cloud capacity is elastically extendable, end devices and edge devices are to various degrees resource-constrained. Hence, an efficient resource management is essential to make edge computing a reality. In this work, we first present terminology and architectures to characterize current works within the field of edge computing. Then, we review a wide range of recent articles and categorize relevant aspects in terms of 4 perspectives: resource type, resource management objective, resource location, and resource use. This taxonomy and the ensuing analysis is used to identify some gaps in the existing research. Among several research gaps, we found that research is less prevalent on data, storage, and energy as a resource, and less extensive towards the estimation, discovery and sharing objectives. As for resource types, the most well-studied resources are computation and communication resources. Our analysis shows that resource management at the edge requires a deeper understanding of how methods applied at different levels and geared towards different resource types interact. Specifically, the impact of mobility and collaboration schemes requiring incentives are expected to be different in edge architectures compared to the classic cloud solutions. Finally, we find that fewer works are dedicated to the study of non-functional properties or to quantifying the footprint of resource management techniques, including edge-specific means of migrating data and services.Comment: Accepted in the Special Issue Mobile Edge Computing of the Wireless Communications and Mobile Computing journa

    D2D-Based Grouped Random Access to Mitigate Mobile Access Congestion in 5G Sensor Networks

    Full text link
    The Fifth Generation (5G) wireless service of sensor networks involves significant challenges when dealing with the coordination of ever-increasing number of devices accessing shared resources. This has drawn major interest from the research community as many existing works focus on the radio access network congestion control to efficiently manage resources in the context of device-to-device (D2D) interaction in huge sensor networks. In this context, this paper pioneers a study on the impact of D2D link reliability in group-assisted random access protocols, by shedding the light on beneficial performance and potential limitations of approaches of this kind against tunable parameters such as group size, number of sensors and reliability of D2D links. Additionally, we leverage on the association with a Geolocation Database (GDB) capability to assist the grouping decisions by drawing parallels with recent regulatory-driven initiatives around GDBs and arguing benefits of the suggested proposal. Finally, the proposed method is approved to significantly reduce the delay over random access channels, by means of an exhaustive simulation campaign.Comment: First submission to IEEE Communications Magazine on Oct.28.2017. Accepted on Aug.18.2019. This is the camera-ready versio

    Point-to-Multipoint Communication Enablers for the Fifth Generation of Wireless Systems

    Full text link
    (c) 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.[EN] 3GPP has enhanced the point-to-multipoint (PTM) communication capabilities of 4G LTE in all releases since the adoption of eMBMS in Release-9. Recent enhancements cover not only television services, but also critical machine-type and vehicular communications, following the backward-compatibility design philosophy of LTE. This article discusses the opportunity in the design and standardization of 5G to break with the existing paradigm for PTM transmissions in 4G LTE, where broadcast PTM transmissions were initially conceived as an add-on and pre-positioned service. 5G brings the opportunity to incorporate PTM capabilities as built-in delivery features from the outset, integrating point-to-point and PTM modes under one common framework and enabling dynamic use of PTM to maximize network and spectrum efficiency. This approach will open the door to completely new levels of network management and delivery cost efficiency. The article also discusses the implications of PTM for network slicing to customize and optimize network resources on a common 5G infrastructure to accommodate different use cases and services taking into account user densityThis work was supported in part by the European Commission under the 5G-PPP project Broadcast and Multicast Communication Enablers for the Fifth-(H2020-ICT-2016-2 call, grant number 761498). The views expressed in this contribution are those of the authors and do not necessarily represent the project.Generation of Wireless Systems 5G-XcastGomez-Barquero, D.; Navratil, D.; Appleby, S.; Stagg, M. (2018). Point-to-Multipoint Communication Enablers for the Fifth Generation of Wireless Systems. IEEE Communications Standards Magazine. 2(1):53-59. https://doi.org/10.1109/MCOMSTD.2018.170006953592

    Contributions to energy-aware demand-response systems using SDN and NFV for fog computing

    Get PDF
    Ever-increasing energy consumption, the depletion of non-renewable resources, the climate impact associated with energy generation, and finite energy-production capacity are important concerns worldwide that drive the urgent creation of new energy management and consumption schemes. In this regard, by leveraging the massive connectivity provided by emerging communications such as the 5G systems, this thesis proposes a long-term sustainable Demand-Response solution for the adaptive and efficient management of available energy consumption for Internet of Things (IoT) infrastructures, in which energy utilization is optimized based on the available supply. In the proposed approach, energy management focuses on consumer devices (e.g., appliances such as a light bulb or a screen). In this regard, by proposing that each consumer device be part of an IoT infrastructure, it is feasible to control its respective consumption. The proposal includes an architecture that uses Network Functions Virtualization (NFV) and Software Defined Networking technologies as enablers to promote the primary use of energy from renewable sources. Associated with architecture, this thesis presents a novel consumption model conditioned on availability in which consumers are part of the management process. To efficiently use the energy from renewable and non-renewable sources, several management strategies are herein proposed, such as the prioritization of the energy supply, workload scheduling using time-shifting capabilities, and quality degradation to decrease- the power demanded by consumers if needed. The adaptive energy management solution is modeled as an Integer Linear Programming, and its complexity has been identified to be NP-Hard. To verify the improvements in energy utilization, an optimal algorithmic solution based on a brute force search has been implemented and evaluated. Because the hardness of the adaptive energy management problem and the non-polynomial growth of its optimal solution, which is limited to energy management for a small number of energy demands (e.g., 10 energy demands) and small values of management mechanisms, several faster suboptimal algorithmic strategies have been proposed and implemented. In this context, at the first stage, we implemented three heuristic strategies: a greedy strategy (GreedyTs), a genetic-algorithm-based solution (GATs), and a dynamic programming approach (DPTs). Then, we incorporated into both the optimal and heuristic strategies a prepartitioning method in which the total set of analyzed services is divided into subsets of smaller size and complexity that are solved iteratively. As a result of the adaptive energy management in this thesis, we present eight strategies, one timal and seven heuristic, that when deployed in communications infrastructures such as the NFV domain, seek the best possible scheduling of demands, which lead to efficient energy utilization. The performance of the algorithmic strategies has been validated through extensive simulations in several scenarios, demonstrating improvements in energy consumption and the processing of energy demands. Additionally, the simulation results revealed that the heuristic approaches produce high-quality solutions close to the optimal while executing among two and seven orders of magnitude faster and with applicability to scenarios with thousands and hundreds of thousands of energy demands. This thesis also explores possible application scenarios of both the proposed architecture for adaptive energy management and algorithmic strategies. In this regard, we present some examples, including adaptive energy management in-home systems and 5G networks slicing, energy-aware management solutions for unmanned aerial vehicles, also known as drones, and applicability for the efficient allocation of spectrum in flex-grid optical networks. Finally, this thesis presents open research problems and discusses other application scenarios and future work.El constante aumento del consumo de energía, el agotamiento de los recursos no renovables, el impacto climático asociado con la generación de energía y la capacidad finita de producción de energía son preocupaciones importantes en todo el mundo que impulsan la creación urgente de nuevos esquemas de consumo y gestión de energía. Al aprovechar la conectividad masiva que brindan las comunicaciones emergentes como los sistemas 5G, esta tesis propone una solución de Respuesta a la Demanda sostenible a largo plazo para la gestión adaptativa y eficiente del consumo de energía disponible para las infraestructuras de Internet of Things (IoT), en el que se optimiza la utilización de la energía en función del suministro disponible. En el enfoque propuesto, la gestión de la energía se centra en los dispositivos de consumo (por ejemplo, electrodomésticos). En este sentido, al proponer que cada dispositivo de consumo sea parte de una infraestructura IoT, es factible controlar su respectivo consumo. La propuesta incluye una arquitectura que utiliza tecnologías de Network Functions Virtualization (NFV) y Software Defined Networking como habilitadores para promover el uso principal de energía de fuentes renovables. Asociada a la arquitectura, esta tesis presenta un modelo de consumo condicionado a la disponibilidad en el que los consumidores son parte del proceso de gestión. Para utilizar eficientemente la energía de fuentes renovables y no renovables, se proponen varias estrategias de gestión, como la priorización del suministro de energía, la programación de la carga de trabajo utilizando capacidades de cambio de tiempo y la degradación de la calidad para disminuir la potencia demandada. La solución de gestión de energía adaptativa se modela como un problema de programación lineal entera con complejidad NP-Hard. Para verificar las mejoras en la utilización de energía, se ha implementado y evaluado una solución algorítmica óptima basada en una búsqueda de fuerza bruta. Debido a la dureza del problema de gestión de energía adaptativa y el crecimiento no polinomial de su solución óptima, que se limita a la gestión de energía para un pequeño número de demandas de energía (por ejemplo, 10 demandas) y pequeños valores de los mecanismos de gestión, varias estrategias algorítmicas subóptimos más rápidos se han propuesto. En este contexto, en la primera etapa, implementamos tres estrategias heurísticas: una estrategia codiciosa (GreedyTs), una solución basada en algoritmos genéticos (GATs) y un enfoque de programación dinámica (DPTs). Luego, incorporamos tanto en la estrategia óptima como en la- heurística un método de prepartición en el que el conjunto total de servicios analizados se divide en subconjuntos de menor tamaño y complejidad que se resuelven iterativamente. Como resultado de la gestión adaptativa de la energía en esta tesis, presentamos ocho estrategias, una óptima y siete heurísticas, que cuando se despliegan en infraestructuras de comunicaciones como el dominio NFV, buscan la mejor programación posible de las demandas, que conduzcan a un uso eficiente de la energía. El desempeño de las estrategias algorítmicas ha sido validado a través de extensas simulaciones en varios escenarios, demostrando mejoras en el consumo de energía y el procesamiento de las demandas de energía. Los resultados de la simulación revelaron que los enfoques heurísticos producen soluciones de alta calidad cercanas a las óptimas mientras se ejecutan entre dos y siete órdenes de magnitud más rápido y con aplicabilidad a escenarios con miles y cientos de miles de demandas de energía. Esta tesis también explora posibles escenarios de aplicación tanto de la arquitectura propuesta para la gestión adaptativa de la energía como de las estrategias algorítmicas. En este sentido, presentamos algunos ejemplos, que incluyen sistemas de gestión de energía adaptativa en el hogar, en 5G networkPostprint (published version
    corecore