4,446 research outputs found

    Reconfigurable Intelligent Surfaces for Energy Efficiency in Wireless Communication

    Full text link
    The adoption of a Reconfigurable Intelligent Surface (RIS) for downlink multi-user communication from a multi-antenna base station is investigated in this paper. We develop energy-efficient designs for both the transmit power allocation and the phase shifts of the surface reflecting elements, subject to individual link budget guarantees for the mobile users. This leads to non-convex design optimization problems for which to tackle we propose two computationally affordable approaches, capitalizing on alternating maximization, gradient descent search, and sequential fractional programming. Specifically, one algorithm employs gradient descent for obtaining the RIS phase coefficients, and fractional programming for optimal transmit power allocation. Instead, the second algorithm employs sequential fractional programming for the optimization of the RIS phase shifts. In addition, a realistic power consumption model for RIS-based systems is presented, and the performance of the proposed methods is analyzed in a realistic outdoor environment. In particular, our results show that the proposed RIS-based resource allocation methods are able to provide up to 300%300\% higher energy efficiency, in comparison with the use of regular multi-antenna amplify-and-forward relaying.Comment: Accepted by IEEE TWC; additional materials on the topic are included in the 2018 conference publications at ICASSP (https://ieeexplore.ieee.org/abstract/document/8461496) and GLOBECOM 2018 (arXiv:1809.05397

    Massive MIMO and Small Cells: Improving Energy Efficiency by Optimal Soft-Cell Coordination

    Full text link
    To improve the cellular energy efficiency, without sacrificing quality-of-service (QoS) at the users, the network topology must be densified to enable higher spatial reuse. We analyze a combination of two densification approaches, namely "massive" multiple-input multiple-output (MIMO) base stations and small-cell access points. If the latter are operator-deployed, a spatial soft-cell approach can be taken where the multiple transmitters serve the users by joint non-coherent multiflow beamforming. We minimize the total power consumption (both dynamic emitted power and static hardware power) while satisfying QoS constraints. This problem is proved to have a hidden convexity that enables efficient solution algorithms. Interestingly, the optimal solution promotes exclusive assignment of users to transmitters. Furthermore, we provide promising simulation results showing how the total power consumption can be greatly improved by combining massive MIMO and small cells; this is possible with both optimal and low-complexity beamforming.Comment: Published at International Conference on Telecommunications (ICT 2013), 6-8 May 2013, Casablanca, Morocco, 5 pages, 4 figures, 2 tables. This version includes the Matlab code necessary to reproduce the simulations; see the ancillary files. This version also corrects errors in Table 1 and in the simulations, which affected Figs. 3-

    Fronthaul-Constrained Cloud Radio Access Networks: Insights and Challenges

    Full text link
    As a promising paradigm for fifth generation (5G) wireless communication systems, cloud radio access networks (C-RANs) have been shown to reduce both capital and operating expenditures, as well as to provide high spectral efficiency (SE) and energy efficiency (EE). The fronthaul in such networks, defined as the transmission link between a baseband unit (BBU) and a remote radio head (RRH), requires high capacity, but is often constrained. This article comprehensively surveys recent advances in fronthaul-constrained C-RANs, including system architectures and key techniques. In particular, key techniques for alleviating the impact of constrained fronthaul on SE/EE and quality of service for users, including compression and quantization, large-scale coordinated processing and clustering, and resource allocation optimization, are discussed. Open issues in terms of software-defined networking, network function virtualization, and partial centralization are also identified.Comment: 5 Figures, accepted by IEEE Wireless Communications. arXiv admin note: text overlap with arXiv:1407.3855 by other author
    corecore