1,514 research outputs found

    Spectrum Sensing of DVB-T2 Signals in Multipath Channels for Cognitive Radio Networks

    Get PDF
    © 2018 VDE VERLAG GMBHIn this paper, spectrum sensing of digital video broadcasting-second generation terrestrial (DVB-T2) signals in different fading environments with energy detection (ED) is considered. ED is known to achieve an increased performance among low computational complexity detectors, but it is susceptible to noise uncertainty. By taking into consideration the edge pilot and scattered pilot periodicity in DVB-T2 signals, a low computational complex noise power estimator is proposed. It is shown analytically that the choice of detector depends on the environment, the detector requirements, the available prior knowledge and with the noise power estimator. Simulation confirm that with the noise power estimator, ED significantly outperforms the pilot correlation-based detectors. Simulation also show that the proposed scheme enables ED to obtain increased detection performance in fading channels

    Spectrum Sensing of DVB-T2 Signals using a Low Computational Noise Power Estimation

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted ncomponent of this work in other works.Cognitive radio is a promising technology that answers the spectrum scarcity problem arising from the proliferation of wireless networks and mobile services. In this paper, spectrum sensing of digital video broadcasting-second generation terrestrial (DVB-T2) signals in AWGN, WRAN and COST207 multipath fading environment are considered. ED is known to achieve an increased performance among low computational complexity detectors, but it is susceptible to noise uncertainty. Taking into consideration the edge pilot and scattered pilot periodicity in DVB-T2 signals, a low computational noise power estimator is proposed. Analytical forms for the detector are derived. Simulation results show that with the noise power estimator, ED significantly outperforms the pilot correlation-based detectors. Simulation also show that the proposed scheme enables ED to obtain increased detection performance in multi-path fading environments. Moreover, based on this algorithm a practical sensing scheme for cognitive radio networks is proposed.Peer reviewedFinal Accepted Versio

    Max-Min SNR Signal Energy based Spectrum Sensing Algorithms for Cognitive Radio Networks with Noise Variance Uncertainty

    Full text link
    This paper proposes novel spectrum sensing algorithms for cognitive radio networks. By assuming known transmitter pulse shaping filter, synchronous and asynchronous receiver scenarios have been considered. For each of these scenarios, the proposed algorithm is explained as follows: First, by introducing a combiner vector, an over-sampled signal of total duration equal to the symbol period is combined linearly. Second, for this combined signal, the Signal-to-Noise ratio (SNR) maximization and minimization problems are formulated as Rayleigh quotient optimization problems. Third, by using the solutions of these problems, the ratio of the signal energy corresponding to the maximum and minimum SNRs are proposed as a test statistics. For this test statistics, analytical probability of false alarm (PfP_f) and detection (PdP_d) expressions are derived for additive white Gaussian noise (AWGN) channel. The proposed algorithms are robust against noise variance uncertainty. The generalization of the proposed algorithms for unknown transmitter pulse shaping filter has also been discussed. Simulation results demonstrate that the proposed algorithms achieve better PdP_d than that of the Eigenvalue decomposition and energy detection algorithms in AWGN and Rayleigh fading channels with noise variance uncertainty. The proposed algorithms also guarantee the desired Pf(Pd)P_f(P_d) in the presence of adjacent channel interference signals

    CYCLOSTATIONARY FEATURES BASED LOW COMPLEXITY MUTLIRESOLUTION SPECTRUM SENSING FOR COGNITVE RADIO APPLICATIONS

    Get PDF
    The demand for variety of services using wireless communication has grown remarkably in the past few many years, consequently causing an acute problem of spectrum scarcity. Today, it is one of the most challenging problems in modern wireless communication. To overcome this, the concept of cognitive radio has been proposed and this technology is fast maturing. The first and foremost function a cognitive radio must do is to sense the spectrum as accurately as possible and do it with least complexity. Among many techniques of spectrum sensing, the Multi-resolution Spectrum Sensing (MRSS) is a popular technique in recent literature. Various multi resolution techniques are used that include wavelet based spectrum estimation and spectral hole detection, wavelet based multi-resolution in analog domain and multi-resolution multiple antenna based detection. However, the basic idea is the same - the total bandwidth is sensed using coarse resolution energy detection, then, fine sensing is applied to the portion of interest. None of these techniques, however, use multi-resolution sensing using cyclostationary features for cognitive radio applications which are more reliable but computationally expensive. In this thesis, we suggest a cyclostationary features based low complexity multi-resolution spectrum sensing for cognitive radio applications. The proposed technique discussed in this thesis is inspired by the quickness of multi-resolution and the reliability of cyclostationary feature detection. The performance of the proposed scheme is primarily evaluated by its complexity analysis and by determining the minimum signal-to-noise ratio that gives 90% probability of correct classification. Both subjective and objective evaluation show that the proposed scheme is not only superior to the commonly used energy detection method but also to various multi-resolution sensing techniques as it relies on the robustness of cyclostationary feature detection. The results found are encouraging and the proposed algorithms are proved to be not only fast but also more robust and reliable

    Spectrum sensing algorithms and software-defined radio implementation for cognitive radio system

    Get PDF
    The scarcity of spectral resources in wireless communications, due to a fixed frequency allocation policy, is a strong limitation to the increasing demand for higher data rates. However, measurements showed that a large part of frequency channels are underutilized or almost unoccupied. The cognitive radio paradigm arises as a tempting solution to the spectral congestion problem. A cognitive radio must be able to identify transmission opportunities in unused channels and to avoid generating harmful interference with the licensed primary users. Its key enabling technology is the spectrum sensing unit, whose ultimate goal consists in providing an indication whether a primary transmission is taking place in the observed channel. Such indication is determined as the result of a binary hypothesis testing experiment wherein null hypothesis (alternate hypothesis) corresponds to the absence (presence) of the primary signal. The first parts of this thesis describes the spectrum sensing problem and presents some of the best performing detection techniques. Energy Detection and multi-antenna Eigenvalue-Based Detection algorithms are considered. Important aspects are taken into account, like the impact of noise estimation or the effect of primary user traffic. The performance of each detector is assessed in terms of false alarm probability and detection probability. In most experimental research, cognitive radio techniques are deployed in software-defined radio systems, radio transceivers that allow operating parameters (like modulation type, bandwidth, output power, etc.) to be set or altered by software.In the second part of the thesis, we introduce the software-defined radio concept. Then, we focus on the implementation of Energy Detection and Eigenvalue-Based Detection algorithms: first, the used software platform, GNU Radio, is described, secondly, the implementation of a parallel energy detector and a multi-antenna eigenbased detector is illustrated and details on the used methodologies are given. Finally, we present the deployed experimental cognitive testbeds and the used radio peripherals. The obtained algorithmic results along with the software-defined radio implementation may offer a set of tools able to create a realistic cognitive radio system with real-time spectrum sensing capabilities

    Cross-platform demonstrator combining spectrum sensing and a geo-location database

    Get PDF
    “Copyright © [2012] IEEE. Reprinted from ICT Future Network & Mobile Summit 2012. ISBN: 978-1-4673-0320-0. This material is posted here with permission of the IEEE. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.”After the digital switchover, a secondary access of the so-called TV White Spaces should not interfere with primary users, such as DVB-T systems and local wireless microphone devices. One consensual method for secondary spectrum users to avoid interference is to combine geo-location database with spectrum sensing. This paper describes an experimental platform that combines wireless microphone sensors with a web-based geo-location database access. Software defined radios and Internet technologies are the enabling tools in use. From test trials in a real scenario, the platform was capable to update a list of vacant channel from the geo-location database, using reliable information from blind sensing algorithms

    An Innovative Signal Detection Algorithm in Facilitating the Cognitive Radio Functionality for Wireless Regional Area Network Using Singular Value Decomposition

    Get PDF
    This thesis introduces an innovative signal detector algorithm in facilitating the cognitive radio functionality for the new IEEE 802.22 Wireless Regional Area Networks (WRAN) standard. It is a signal detector based on a Singular Value Decomposition (SVD) technique that utilizes the eigenvalue of a received signal. The research started with a review of the current spectrum sensing methods which the research classifies as the specific, semiblind or blind signal detector. A blind signal detector, which is known as eigenvalue based detection, was found to be the most desired detector for its detection capabilities, time of execution, and zero a-priori knowledge. The detection algorithm was developed analytically by applying the Signal Detection Theory (SDT) and the Random Matrix Theory (RMT). It was then simulated using Matlab® to test its performance and compared with similar eigenvalue based signal detector. There are several techniques in finding eigenvalues. However, this research considered two techniques known as eigenvalue decomposition (EVD) and SVD. The research tested the algorithm with a randomly generated signal, simulated Digital Video Broadcasting-Terrestrial (DVB-T) standard and real captured digital television signals based on the Advanced Television Systems Committee (ATSC) standard. The SVD based signal detector was found to be more efficient in detecting signals without knowing the properties of the transmitted signal. The algorithm is suitable for the blind spectrum sensing where the properties of the signal to be detected are unknown. This is also the advantage of the algorithm since any signal would interfere and subsequently affect the quality of service (QoS) of the IEEE 802.22 connection. Furthermore, the algorithm performed better in the low signal-to-noise ratio (SNR) environment. In order to use the algorithm effectively, users need to balance between detection accuracy and execution time. It was found that a higher number of samples would lead to more accurate detection, but will take longer time. In contrary, fewer numbers of samples used would result in less accuracy, but faster execution time. The contributions of this thesis are expected to assist the IEEE 802.22 Standard Working Group, regulatory bodies, network operators and end-users in bringing broadband access to the rural areas

    Study of cyclostationary feature detectors for cognitive radio

    Get PDF
    Master'sMASTER OF ENGINEERIN
    corecore