87 research outputs found

    Matrix and Tensor-based ESPRIT Algorithm for Joint Angle and Delay Estimation in 2D Active Broadband Massive MIMO Systems and Analysis of Direction of Arrival Estimation Algorithms for Basal Ice Sheet Tomography

    Get PDF
    In this thesis, we apply and analyze three direction of arrival algorithms (DoA) to tackle two distinct problems: one belongs to wireless communication, the other to radar signal processing. Though the essence of these two problems is DoA estimation, their formulation, underlying assumptions, application scenario, etc. are totally different. Hence, we write them separately, with ESPRIT algorithm the focus of Part I and MUSIC and MLE detailed in Part II. For wireless communication scenario, mobile data traffic is expected to have an exponential growth in the future. In order to meet the challenge as well as the form factor limitation on the base station, 2D "massive MIMO" has been proposed as one of the enabling technologies to significantly increase the spectral efficiency of a wireless system. In "massive MIMO" systems, a base station will rely on the uplink sounding signals from mobile stations to figure out the spatial information to perform MIMO beamforming. Accordingly, multi-dimensional parameter estimation of a ray-based multi-path wireless channel becomes crucial for such systems to realize the predicted capacity gains. In the first Part, we study joint angle and delay estimation for 2D "massive MIMO" systems in mobile wireless communications. To be specific, we first introduce a low complexity time delay and 2D DoA estimation algorithm based on unitary transformation. Some closed-form results and capacity analysis are involved. Furthermore, the matrix and tensor-based 3D ESPRIT-like algorithms are applied to jointly estimate angles and delay. Significant improvements of the performance can be observed in our communication scheme. Finally, we found that azimuth estimation is more vulnerable compared to elevation estimation. Results suggest that the dimension of the antenna array at the base station plays an important role in determining the estimation performance. These insights will be useful for designing practical "massive MIMO" systems in future mobile wireless communications. For the problem of radar remote sensing of ice sheet topography, one of the key requirements for deriving more realistic ice sheet models is to obtain a good set of basal measurements that enables accurate estimation of bed roughness and conditions. For this purpose, 3D tomography of the ice bed has been successfully implemented with the help of DoA algorithms such as MUSIC and MLE techniques. These methods have enabled fine resolution in the cross-track dimension using synthetic aperture radar (SAR) images obtained from single pass multichannel data. In Part II, we analyze and compare the results obtained from the spectral MUSIC algorithm and an alternating projection (AP) based MLE technique. While the MUSIC algorithm is more attractive computationally compared to MLE, the performance of the latter is known to be superior in most situations. The SAR focused datasets provide a good case study to explore the performance of these two techniques to the application of ice sheet bed elevation estimation. For the antenna array geometry and sample support used in our tomographic application, MUSIC performs better originally using a cross-over analysis where the estimated topography from crossing flightlines are compared for consistency. However, after several improvements applied to MLE, i.e., replacing ideal steering vector generation with measured steering vectors, automatic determination of the number of scatter sources, smoothing the 3D tomography in order to get a more accurate height estimation and introducing a quality metric for the estimated signals, etc., MLE outperforms MUSIC. It confirms that MLE is indeed the optimal estimator for our particular ice bed tomographic application. We observe that, the spatial bottom smoothing, aiming to remove the artifacts made by MLE algorithm, is the most essential step in the post-processing procedure. The 3D tomography we obtained lays a good foundation for further analysis and modeling of ice sheets

    Antenna Systems

    Get PDF
    This book offers an up-to-date and comprehensive review of modern antenna systems and their applications in the fields of contemporary wireless systems. It constitutes a useful resource of new material, including stochastic versus ray tracing wireless channel modeling for 5G and V2X applications and implantable devices. Chapters discuss modern metalens antennas in microwaves, terahertz, and optical domain. Moreover, the book presents new material on antenna arrays for 5G massive MIMO beamforming. Finally, it discusses new methods, devices, and technologies to enhance the performance of antenna systems

    Tomographic Techniques for Radar Ice Sounding

    Get PDF

    Optimizing Techniques and Cramer-Rao Bound for Passive Source Location Estimation

    Get PDF
    This work is motivated by the problem of locating potential unstable areas in underground potash mines with better accuracy more consistently while introducing minimum extra computational load. It is important for both efficient mine design and safe mining activities, since these unstable areas may experience local, low-intensity earthquakes in the vicinity of an underground mine. The object of this thesis is to present localization algorithms that can deliver the most consistent and accurate estimation results for the application of interest. As the first step towards the goal, three most representative source localization algorithms given in the literature are studied and compared. A one-step energy based grid search (EGS) algorithm is selected to address the needs of the application of interest. The next step is the development of closed-form Cram´er-Rao bound (CRB) expressions. The mathematical derivation presented in this work deals with continuous signals using the Karhunen-Lo`eve (K-L) expansion, which makes the derivation applicable to non-stationary Gaussian noise problems. Explicit closed-form CRB expressions are presented only for stationary Gaussian noise cases using the spectrum representation of the signal and noise though. Using the CRB comparisons, two approaches are proposed to further improve the EGS algorithm. The first approach utilizes the corresponding analytic expression of the error estimation variance (EEV) given in [1] to derive an amplitude weight expression, optimal in terms of minimizing this EEV, for the case of additive Gaussian noise with a common spectrum interpretation across all the sensors. An alternate noniterative amplitude weighting scheme is proposed based on the optimal amplitude weight expression. It achieves the same performance with less calculation compared with the traditional iterative approach. The second approach tries to optimize the EGS algorithm in the frequency domain. An analytic frequency weighted EEV expression is derived using spectrum representation and the stochastic process theory. Based on this EEV expression, an integral equation is established and solved using the calculus of variations technique. The solution corresponds to a filter transfer function that is optimal in the sense that it minimizes this analytic frequency domain EEV. When various parts of the frequency domain EEV expression are ignored during the minimization procedure using Cauchy-Schwarz inequality, several different filter transfer functions result. All of them turn out to be well known classical filters that have been developed in the literature and used to deal with source localization problems. This demonstrates that in terms of minimizing the analytic EEV, they are all suboptimal, not optimal. Monte Carlo simulation is performed and shows that both amplitude and frequency weighting bring obvious improvement over the unweighted EGS estimator

    Development of new array signal processing techniques using swarm intelligence

    Get PDF
    Ankara : The Department of Electrical and Electronics Engineering and the Institute of Engineering and Sciences of Bilkent University, 2010.Thesis (Ph. D.) -- Bilkent University, 2010.Includes bibliographical references leaves 144-158.In this thesis, novel array signal processing techniques are proposed for identifi- cation of multipath communication channels based on cross ambiguity function (CAF) calculation, swarm intelligence and compressed sensing (CS) theory. First technique detects the presence of multipath components by integrating CAFs of each antenna output in the array and iteratively estimates direction-of-arrivals (DOAs), time delays and Doppler shifts of a known waveform. Second technique called particle swarm optimization-cross ambiguity function (PSO-CAF) makes use of the CAF calculation to transform the received antenna array outputs to delay-Doppler domain for efficient exploitation of the delay-Doppler diversity of the multipath components. Clusters of multipath components are identified by using a simple amplitude thresholding in the delay-Doppler domain. PSO is used to estimate parameters of the multipath components in each cluster. Third proposed technique combines CS theory, swarm intelligence and CAF computation. Performance of standard CS formulations based on discretization of the multipath channel parameter space degrade significantly when the actual channel parameters deviate from the assumed discrete set of values. To alleviate this “off-grid”problem, a novel technique by making use of the PSO, that can also be used in applications other than the multipath channel identification is proposed. Performances of the proposed techniques are verified both on sythetic and real data.Güldoğan, Mehmet BurakPh.D

    Orthogonal frequency division multiplexing multiple-input multiple-output automotive radar with novel signal processing algorithms

    Get PDF
    Advanced driver assistance systems that actively assist the driver based on environment perception achieved significant advances in recent years. Along with this development, autonomous driving became a major research topic that aims ultimately at development of fully automated, driverless vehicles. Since such applications rely on environment perception, their ever increasing sophistication imposes growing demands on environmental sensors. Specifically, the need for reliable environment sensing necessitates the development of more sophisticated, high-performance radar sensors. A further vital challenge in terms of increased radar interference arises with the growing market penetration of the vehicular radar technology. To address these challenges, in many respects novel approaches and radar concepts are required. As the modulation is one of the key factors determining the radar performance, the research of new modulation schemes for automotive radar becomes essential. A topic that emerged in the last years is the radar operating with digitally generated waveforms based on orthogonal frequency division multiplexing (OFDM). Initially, the use of OFDM for radar was motivated by the combination of radar with communication via modulation of the radar waveform with communication data. Some subsequent works studied the use of OFDM as a modulation scheme in many different radar applications - from adaptive radar processing to synthetic aperture radar. This suggests that the flexibility provided by OFDM based digital generation of radar waveforms can potentially enable novel radar concepts that are well suited for future automotive radar systems. This thesis aims to explore the perspectives of OFDM as a modulation scheme for high-performance, robust and adaptive automotive radar. To this end, novel signal processing algorithms and OFDM based radar concepts are introduced in this work. The main focus of the thesis is on high-end automotive radar applications, while the applicability for real time implementation is of primary concern. The first part of this thesis focuses on signal processing algorithms for distance-velocity estimation. As a foundation for the algorithms presented in this thesis, a novel and rigorous signal model for OFDM radar is introduced. Based on this signal model, the limitations of the state-of-the-art OFDM radar signal processing are pointed out. To overcome these limitations, we propose two novel signal processing algorithms that build upon the conventional processing and extend it by more sophisticated modeling of the radar signal. The first method named all-cell Doppler compensation (ACDC) overcomes the Doppler sensitivity problem of OFDM radar. The core idea of this algorithm is the scenario-independent correction of Doppler shifts for the entire measurement signal. Since Doppler effect is a major concern for OFDM radar and influences the radar parametrization, its complete compensation opens new perspectives for OFDM radar. It not only achieves an improved, Doppler-independent performance, it also enables more favorable system parametrization. The second distance-velocity estimation algorithm introduced in this thesis addresses the issue of range and Doppler frequency migration due to the target’s motion during the measurement. For the conventional radar signal processing, these migration effects set an upper limit on the simultaneously achievable distance and velocity resolution. The proposed method named all-cell migration compensation (ACMC) extends the underlying OFDM radar signal model to account for the target motion. As a result, the effect of migration is compensated implicitly for the entire radar measurement, which leads to an improved distance and velocity resolution. Simulations show the effectiveness of the proposed algorithms in overcoming the two major limitations of the conventional OFDM radar signal processing. As multiple-input multiple-output (MIMO) radar is a well-established technology for improving the direction-of-arrival (DOA) estimation, the second part of this work studies the multiplexing methods for OFDM radar that enable simultaneous use of multiple transmit antennas for MIMO radar processing. After discussing the drawbacks of known multiplexing methods, we introduce two advanced multiplexing schemes for OFDM-MIMO radar based on non-equidistant interleaving of OFDM subcarriers. These multiplexing approaches exploit the multicarrier structure of OFDM for generation of orthogonal waveforms that enable a simultaneous operation of multiple MIMO channels occupying the same bandwidth. The primary advantage of these methods is that despite multiplexing they maintain all original radar parameters (resolution and unambiguous range in distance and velocity) for each individual MIMO channel. To obtain favorable interleaving patterns with low sidelobes, we propose an optimization approach based on genetic algorithms. Furthermore, to overcome the drawback of increased sidelobes due to subcarrier interleaving, we study the applicability of sparse processing methods for the distance-velocity estimation from measurements of non-equidistantly interleaved OFDM-MIMO radar. We introduce a novel sparsity based frequency estimation algorithm designed for this purpose. The third topic addressed in this work is the robustness of OFDM radar to interference from other radar sensors. In this part of the work we study the interference robustness of OFDM radar and propose novel interference mitigation techniques. The first interference suppression algorithm we introduce exploits the robustness of OFDM to narrowband interference by dropping subcarriers strongly corrupted by interference from evaluation. To avoid increase of sidelobes due to missing subcarriers, their values are reconstructed from the neighboring ones based on linear prediction methods. As a further measure for increasing the interference robustness in a more universal manner, we propose the extension of OFDM radar with cognitive features. We introduce the general concept of cognitive radar that is capable of adapting to the current spectral situation for avoiding interference. Our work focuses mainly on waveform adaptation techniques; we propose adaptation methods that allow dynamic interference avoidance without affecting adversely the estimation performance. The final part of this work focuses on prototypical implementation of OFDM-MIMO radar. With the constructed prototype, the feasibility of OFDM for high-performance radar applications is demonstrated. Furthermore, based on this radar prototype the algorithms presented in this thesis are validated experimentally. The measurements confirm the applicability of the proposed algorithms and concepts for real world automotive radar implementations

    Proceedings of the EAA Spatial Audio Signal Processing symposium: SASP 2019

    Get PDF
    International audienc

    Array Manifold Calibration for Multichannel SAR Sounders

    Get PDF
    This dissertation demonstrates airborne synthetic aperture radar (SAR) sounder array manifold calibration to improve outcomes in two-dimensional and three-dimensional image formation of ice sheet and glacier subsurfaces. The methodology relies on the creation of snapshot databases that aid in both the identification of calibration pixels as well as the validation of proposed calibration strategies. A parametric estimator of nonlinear SAR sounder manifold parameters is derived given a superset of statistically independent and spatially diverse subsets, assuming knowledge of the manifold model. Both measurements-based and computational electromagnetic modeling (CEM) approaches are pursued in obtaining a parametric representation of the manifold that enables the application of this estimator. The former relies on a principal components based characterization of SAR sounder manifolds. By incorporating a subspace clustering technique to identify pixels with a single dominant source, the algorithm circumvents an assumption of single source observations that underlies the formulation of nonparametric methods and traditionally limits the applicability of these techniques to the SAR sounder problem. Three manifolds are estimated and tested against a nominal manifold model in angle estimation and tomography. Measured manifolds on average reduce angle estimation error by a factor of 4.8 and lower vertical elevation uncertainty of SAR sounder derived digital elevation models by a factor of 3.7. Application of the measured manifolds in angle estimation produces 3-D images with more focused scattering signatures and higher intensity pixels that improve automated surface extraction outcomes. Measured manifolds are studied against Method of Moments predictions of the array's response to plane wave excitation obtained with a detailed model of the sounder's array that includes the airborne platform and fairing housing. CEM manifolds reduce angle estimation uncertainty off nadir on average by a factor of 3 when applied to measurements, providing initial confirmation of the utility of the CEM model in predicting angle estimation performance of the sounder's airborne arrays. The research findings of this dissertation indicate that SAR sounder manifold calibration will significantly increase the scientific value of legacy ice sheet and glacier sounding data sets and lead to optimized designs of future remote sensing instrumentation for surveying the cryosphere
    corecore