548 research outputs found

    Learning and Management for Internet-of-Things: Accounting for Adaptivity and Scalability

    Get PDF
    Internet-of-Things (IoT) envisions an intelligent infrastructure of networked smart devices offering task-specific monitoring and control services. The unique features of IoT include extreme heterogeneity, massive number of devices, and unpredictable dynamics partially due to human interaction. These call for foundational innovations in network design and management. Ideally, it should allow efficient adaptation to changing environments, and low-cost implementation scalable to massive number of devices, subject to stringent latency constraints. To this end, the overarching goal of this paper is to outline a unified framework for online learning and management policies in IoT through joint advances in communication, networking, learning, and optimization. From the network architecture vantage point, the unified framework leverages a promising fog architecture that enables smart devices to have proximity access to cloud functionalities at the network edge, along the cloud-to-things continuum. From the algorithmic perspective, key innovations target online approaches adaptive to different degrees of nonstationarity in IoT dynamics, and their scalable model-free implementation under limited feedback that motivates blind or bandit approaches. The proposed framework aspires to offer a stepping stone that leads to systematic designs and analysis of task-specific learning and management schemes for IoT, along with a host of new research directions to build on.Comment: Submitted on June 15 to Proceeding of IEEE Special Issue on Adaptive and Scalable Communication Network

    Workload allocation in mobile edge computing empowered internet of things

    Get PDF
    In the past few years, a tremendous number of smart devices and objects, such as smart phones, wearable devices, industrial and utility components, are equipped with sensors to sense the real-time physical information from the environment. Hence, Internet of Things (IoT) is introduced, where various smart devices are connected with each other via the internet and empowered with data analytics. Owing to the high volume and fast velocity of data streams generated by IoT devices, the cloud that can provision flexible and efficient computing resources is employed as a smart brain to process and store the big data generated from IoT devices. However, since the remote cloud is far from IoT users which send application requests and await the results generated by the data processing in the remote cloud, the response time of the requests may be too long, especially unbearable for delay sensitive IoT applications. Therefore, edge computing resources (e.g., cloudlets and fog nodes) which are close to IoT devices and IoT users can be employed to alleviate the traffic load in the core network and minimize the response time for IoT users. In edge computing, the communications latency critically affects the response time of IoT user requests. Owing to the dynamic distribution of IoT users (i.e., UEs), drone base station (DBS), which can be flexibly deployed for hotspot areas, can potentially improve the wireless latency of IoT users by mitigating the heavy traffic loads of macro BSs. Drone-based communications poses two major challenges: 1) the DBS should be deployed in suitable areas with heavy traffic demands to serve more UEs; 2) the traffic loads in the network should be allocated among macro BSs and DBSs to avoid instigating traffic congestions. Therefore, a TrAffic Load baLancing (TALL) scheme in such drone-assisted fog network is proposed to minimize the wireless latency of IoT users. In the scheme, the problem is decomposed into two sub-problems, two algorithms are designed to optimize the DBS placement and user association, respectively. Extensive simulations have been set up to validate the performance of the proposed scheme. Meanwhile, various IoT applications can be run in cloudlets to reduce the response time between IoT users (e.g., user equipments in mobile networks) and cloudlets. Considering the spatial and temporal dynamics of each application\u27s workloads among cloudlets, the workload allocation among cloudlets for each IoT application affects the response time of the application\u27s requests. To solve this problem, an Application awaRE workload Allocation (AREA) scheme for edge computing based IoT is designed to minimize the response time of IoT application requests by determining the destination cloudlets for each IoT user\u27s different types of requests and the amount of computing resources allocated for each application in each cloudlet. In this scheme, both the network delay and computing delay are taken into account, i.e., IoT users\u27 requests are more likely assigned to closer and lightly loaded cloudlets. The performance of the proposed scheme has been validated by extensive simulations. In addition, the latency of data flows in IoT devices consist of both the communications latency and computing latency. When some BSs and fog nodes are lightly loaded, other overloaded BSs and fog nodes may incur congestion. Thus, a workload balancing scheme in a fog network is proposed to minimize the latency of IoT data in the communications and processing procedures by associating IoT devices to suitable BSs. Furthermore, the convergence and the optimality of the proposed workload balancing scheme has been proved. Through extensive simulations, the performance of the proposed load balancing scheme is validated

    A survey of multi-access edge computing in 5G and beyond : fundamentals, technology integration, and state-of-the-art

    Get PDF
    Driven by the emergence of new compute-intensive applications and the vision of the Internet of Things (IoT), it is foreseen that the emerging 5G network will face an unprecedented increase in traffic volume and computation demands. However, end users mostly have limited storage capacities and finite processing capabilities, thus how to run compute-intensive applications on resource-constrained users has recently become a natural concern. Mobile edge computing (MEC), a key technology in the emerging fifth generation (5G) network, can optimize mobile resources by hosting compute-intensive applications, process large data before sending to the cloud, provide the cloud-computing capabilities within the radio access network (RAN) in close proximity to mobile users, and offer context-aware services with the help of RAN information. Therefore, MEC enables a wide variety of applications, where the real-time response is strictly required, e.g., driverless vehicles, augmented reality, robotics, and immerse media. Indeed, the paradigm shift from 4G to 5G could become a reality with the advent of new technological concepts. The successful realization of MEC in the 5G network is still in its infancy and demands for constant efforts from both academic and industry communities. In this survey, we first provide a holistic overview of MEC technology and its potential use cases and applications. Then, we outline up-to-date researches on the integration of MEC with the new technologies that will be deployed in 5G and beyond. We also summarize testbeds and experimental evaluations, and open source activities, for edge computing. We further summarize lessons learned from state-of-the-art research works as well as discuss challenges and potential future directions for MEC research

    ROUTER:Fog Enabled Cloud based Intelligent Resource Management Approach for Smart Home IoT Devices

    Get PDF
    There is a growing requirement for Internet of Things (IoT) infrastructure to ensure low response time to provision latency-sensitive real-time applications such as health monitoring, disaster management, and smart homes. Fog computing offers a means to provide such requirements, via a virtualized intermediate layer to provide data, computation, storage, and networking services between Cloud datacenters and end users. A key element within such Fog computing environments is resource management. While there are existing resource manager in Fog computing, they only focus on a subset of parameters important to Fog resource management encompassing system response time, network bandwidth, energy consumption and latency. To date no existing Fog resource manager considers these parameters simultaneously for decision making, which in the context of smart homes will become increasingly key. In this paper, we propose a novel resource management technique (ROUTER) for fog-enabled Cloud computing environments, which leverages Particle Swarm Optimization to optimize simultaneously. The approach is validated within an IoT-based smart home automation scenario, and evaluated within iFogSim toolkit driven by empirical models within a small-scale smart home experiment. Results demonstrate our approach results a reduction of 12% network bandwidth, 10% response time, 14% latency and 12.35% in energy consumption

    Engineering News, Fall 2019

    Get PDF
    https://scholarcommons.scu.edu/eng_news/1043/thumbnail.jp

    Embedding Principal Component Analysis for Data Reductionin Structural Health Monitoring on Low-Cost IoT Gateways

    Get PDF
    Principal component analysis (PCA) is a powerful data reductionmethod for Structural Health Monitoring. However, its computa-tional cost and data memory footprint pose a significant challengewhen PCA has to run on limited capability embedded platformsin low-cost IoT gateways. This paper presents a memory-efficientparallel implementation of the streaming History PCA algorithm.On our dataset, it achieves 10x compression factor and 59x memoryreduction with less than 0.15 dB degradation in the reconstructedsignal-to-noise ratio (RSNR) compared to standard PCA. More-over, the algorithm benefits from parallelization on multiple cores,achieving a maximum speedup of 4.8x on Samsung ARTIK 710
    • …
    corecore