9,616 research outputs found

    A Survey of Techniques for Improving Security of GPUs

    Full text link
    Graphics processing unit (GPU), although a powerful performance-booster, also has many security vulnerabilities. Due to these, the GPU can act as a safe-haven for stealthy malware and the weakest `link' in the security `chain'. In this paper, we present a survey of techniques for analyzing and improving GPU security. We classify the works on key attributes to highlight their similarities and differences. More than informing users and researchers about GPU security techniques, this survey aims to increase their awareness about GPU security vulnerabilities and potential countermeasures

    Detecting time-fragmented cache attacks against AES using Performance Monitoring Counters

    Get PDF
    Cache timing attacks use shared caches in multi-core processors as side channels to extract information from victim processes. These attacks are particularly dangerous in cloud infrastructures, in which the deployed countermeasures cause collateral effects in terms of performance loss and increase in energy consumption. We propose to monitor the victim process using an independent monitoring (detector) process, that continuously measures selected Performance Monitoring Counters (PMC) to detect the presence of an attack. Ad-hoc countermeasures can be applied only when such a risky situation arises. In our case, the victim process is the AES encryption algorithm and the attack is performed by means of random encryption requests. We demonstrate that PMCs are a feasible tool to detect the attack and that sampling PMCs at high frequencies is worse than sampling at lower frequencies in terms of detection capabilities, particularly when the attack is fragmented in time to try to be hidden from detection

    Investigating Emerging Security Threats in Clouds and Data Centers

    Get PDF
    Data centers have been growing rapidly in recent years to meet the surging demand of cloud services. However, the expanding scale of a data center also brings new security threats. This dissertation studies emerging security issues in clouds and data centers from different aspects, including low-level cooling infrastructures and different virtualization techniques such as container and virtual machine (VM). We first unveil a new vulnerability called reduced cooling redundancy that might be exploited to launch thermal attacks, resulting in severely worsened thermal conditions in a data center. Such a vulnerability is caused by the wide adoption of aggressive cooling energy saving policies. We conduct thermal measurements and uncover effective thermal attack vectors at the server, rack, and data center levels. We also present damage assessments of thermal attacks. Our results demonstrate that thermal attacks can negatively impact the thermal conditions and reliability of victim servers, significantly raise the cooling cost, and even lead to cooling failures. Finally, we propose effective defenses to mitigate thermal attacks. We then perform a systematic study to understand the security implications of the information leakage in multi-tenancy container cloud services. Due to the incomplete implementation of system resource isolation mechanisms in the Linux kernel, a spectrum of system-wide host information is exposed to the containers, including host-system state information and individual process execution information. By exploiting such leaked host information, malicious adversaries can easily launch advanced attacks that can seriously affect the reliability of cloud services. Additionally, we discuss the root causes of the containers\u27 information leakage and propose a two-stage defense approach. The experimental results show that our defense is effective and incurs trivial performance overhead. Finally, we investigate security issues in the existing VM live migration approaches, especially the post-copy approach. While the entire live migration process relies upon reliable TCP connectivity for the transfer of the VM state, we demonstrate that the loss of TCP reliability leads to VM live migration failure. By intentionally aborting the TCP connection, attackers can cause unrecoverable memory inconsistency for post-copy, significantly increase service downtime, and degrade the running VM\u27s performance. From the offensive side, we present detailed techniques to reset the migration connection under heavy networking traffic. From the defensive side, we also propose effective protection to secure the live migration procedure

    Security Aware Virtual Machine Allocation Policy to Improve QoS

    Get PDF
    Cloud service providers find managing the energy consumption for datacentres as a critical operation. Significant energy is being used by a rising spike in the number of data centres. To overcome this challenge datacentres, attempt to reduce the number of active physical servers by carrying out virtual machine consolidation process. However, due to inadequate security measures to verify hostile cloud users, the security threats on cloud multitenancy platform have escalated.  In this paper we propose energy efficient virtual machine consolidation using priority-based security aware virtual machine allocation policy to improve datacentre security. The proposed security solution considers the host threat score before virtual machine placement, which has reduced the security threats for co-residency attacks without impacting datacentre energy consumption

    Understanding Security Threats in Cloud

    Get PDF
    As cloud computing has become a trend in the computing world, understanding its security concerns becomes essential for improving service quality and expanding business scale. This dissertation studies the security issues in a public cloud from three aspects. First, we investigate a new threat called power attack in the cloud. Second, we perform a systematical measurement on the public cloud to understand how cloud vendors react to existing security threats. Finally, we propose a novel technique to perform data reduction on audit data to improve system capacity, and hence helping to enhance security in cloud. In the power attack, we exploit various attack vectors in platform as a service (PaaS), infrastructure as a service (IaaS), and software as a service (SaaS) cloud environments. to demonstrate the feasibility of launching a power attack, we conduct series of testbed based experiments and data-center-level simulations. Moreover, we give a detailed analysis on how different power management methods could affect a power attack and how to mitigate such an attack. Our experimental results and analysis show that power attacks will pose a serious threat to modern data centers and should be taken into account while deploying new high-density servers and power management techniques. In the measurement study, we mainly investigate how cloud vendors have reacted to the co-residence threat inside the cloud, in terms of Virtual Machine (VM) placement, network management, and Virtual Private Cloud (VPC). Specifically, through intensive measurement probing, we first profile the dynamic environment of cloud instances inside the cloud. Then using real experiments, we quantify the impacts of VM placement and network management upon co-residence, respectively. Moreover, we explore VPC, which is a defensive service of Amazon EC2 for security enhancement, from the routing perspective. Advanced Persistent Threat (APT) is a serious cyber-threat, cloud vendors are seeking solutions to ``connect the suspicious dots\u27\u27 across multiple activities. This requires ubiquitous system auditing for long period of time, which in turn causes overwhelmingly large amount of system audit logs. We propose a new approach that exploits the dependency among system events to reduce the number of log entries while still supporting high quality forensics analysis. In particular, we first propose an aggregation algorithm that preserves the event dependency in data reduction to ensure high quality of forensic analysis. Then we propose an aggressive reduction algorithm and exploit domain knowledge for further data reduction. We conduct a comprehensive evaluation on real world auditing systems using more than one-month log traces to validate the efficacy of our approach
    corecore