284 research outputs found

    An Energy Efficient and Cost Reduction based Hybridization Scheme for Mobile Ad-hoc Networks (MANET) over the Internet of Things (IoT)

    Get PDF
    Wireless networks are viewed as the best-used network and specifically Portable Specially Appointed Organizations (MANETs) have tracked down numerous applications for its information transmission progressively. The plan issues in this organization are to confine the utilization of energy while communicating data and give security to the hubs. Soa protocol needs to be energy efficient to avoid network failures. Thereby this paper brings an effective energy efficient to optimize LEAR and make it energy efficient. The energy-mindfulness element is added to the LEAR guiding convention in this work using the Binary Particle Swarm Optimization method (BPSO). The recommended method selects programmes taking into account course length in addition to the programme level of energy when predicting the future. To get good results, the steered challenge is first designed using LEAR. The next step is to choose a route that enhances the weighting capability of the study hours and programming power used.This MANET has been secured using the cryptographic method known as AES.According to experimental findings, the proposed hybrid version outperformed other cutting-edge models

    Performance Analysis of Adhoc On Demand Distance Vector (AODV) and Destination Sequence Routing (DSR) protocols in Mobile Adhoc Networks (MANET)

    Get PDF
    This research paper compares the performance of MANET routing protocol such as Ad-hoc On Demand Distance Vector (AODV) and Destination Sequence Routing (DSR) protocol at different Node mobility and node density under different Traffic loads. The experimental data that i got are different from the original data because of several factors like random seed value, number of packets to be sent, packet size, start and end time during simulation and interdeparture time of the Constant Bit Rate generator etc. AODV produced control packets with more than 34 times and DSR more than 4 times when the traffic load was increased. However, DSR is less vulnerable to node mobility and node density in terms routing overhead and is also best suited for scalability compared to AODV

    A Survey on Issues and Challenges in Congestion Adaptive Routing in Mobile Ad hoc Network

    Get PDF
    Mobile ad hoc networks is the future wireless communication systems have recently emerged as an important trend. Mobile adhoc network is self-configurable and adaptive. Due to the mobility of nodes, the network congestion occurs and it is difficult to predict load on the network which leads to congestion. Mobile adhoc network suffers from a severe congestion controlling problem due to the nature of shared communication and mobility. Standard TCP controlling mechanism for congestion is not fit to the dynamic changing topology of MANETs. This provides a wide scope of research work in mobile ad hoc network. The purpose of this survey is to study and analyze various issues and challenges in congestion control mechanisms in adaptive routing protocols in Mobile Adhoc Network (MANET)

    Recent Developments on Mobile Ad-Hoc Networks and Vehicular Ad-Hoc Networks

    Get PDF
    This book presents collective works published in the recent Special Issue (SI) entitled "Recent Developments on Mobile Ad-Hoc Networks and Vehicular Ad-Hoc Networks”. These works expose the readership to the latest solutions and techniques for MANETs and VANETs. They cover interesting topics such as power-aware optimization solutions for MANETs, data dissemination in VANETs, adaptive multi-hop broadcast schemes for VANETs, multi-metric routing protocols for VANETs, and incentive mechanisms to encourage the distribution of information in VANETs. The book demonstrates pioneering work in these fields, investigates novel solutions and methods, and discusses future trends in these field

    Mobile ad hoc networks for intelligent systems

    Get PDF
    Advances in wireless technology and portable computing along with demands for high user mobility have provided a major promotion toward the development of ad hoc networks. Mobile ad hoc networks feature dynamic topology, self-organization, limited bandwidth and battery power of a node. They do not rely on specialized routers for path discovery and traffic routing. Research on ad hoc networks has been extensively investigated in the past few years and related work has focused on many of the layers of the communications architecture. This research intends to investigate applications of MANET for intelligent systems, including intelligent transportation system (ITS), sensor network and mobile intelligent robot network, and propose some approaches to topology management, link layer multiple access and routing algorithms. Their performance is evaluated by theoretical analysis and off-the-shelf simulation tools. Most current research on ad hoc networks assumes the availability of IEEE 802.11. However, the RTS/CTS protocol of 802.11 still leads to packet collision which in turn decreases the network throughput and lifetime. For sensor networks, sensors are mostly battery operated. Hence, resolving packet collision may improve network lifetime by saving valuable power. Using space and network diversity combination, this work proposes a new packet separation approach to packet collision caused by masked nodes. Inter-vehicle communication is a key component of ITS and it is also called vehicular ad hoc network. VANET has many features different from regular MANETs in terms of mobility, network size and connectivity. Given rapid topology changes and network partitioning, this work studies how to organize the numerous vehicular nodes and establish message paths between any pair of vehicular nodes if they are not apart too far away. In urban areas, the inter-vehicle communication has different requirements and constraints than highway environments. The proposed position-based routing strategy for VANETs utilizes the traffic pattern in city environments. Packets are forwarded based on traffic lights timing sequence and the moving direction of relaying vehicles. A multicast protocol is also introduced to visualize the real time road traffic with customized scale. Only vehicles related to a source node\u27s planned trajectory will reply the query packet. The visualized real time traffic information therefore helps the driver make better decision in route planning when traffic congestion happens. Nowadays robots become more and more powerful and intelligent. They can take part in operations in a cooperative manner which makes distributed control necessary. Ad hoc robot communication network is still fresh field for researchers working on networking technology. This work investigates some key issues in robot ad hoc network and evaluate the challenges while establishing robot ad hoc networks

    Secure Group Communication in Delay Tolerant Mobile Ad-Hoc Network

    Get PDF
    Delay-tolerant networks (DTNs) are well-known for delivering various types of information from different senders in a multicast manner, both in centralised and decentralised networks. Wireless mobile nodes form small networks in which one or more senders transmit data to one or more destinations through intermediate nodes. DTN routing protocols differ from traditional wireless routing protocols. There are security threats in DTNs, such as blackhole attackers dropping data, jamming attacks consuming bandwidth, and Vampire attacks depleting battery power and available bandwidth. This paper proposes a prevention scheme to detect and mitigate all three types of attackers in multicast communication. These attackers can impact performance by generating false replies, flooding with redundant information, and wasting communication power. The primary focus of this paper is on security issues related to DTN routing protocols. In order to counter malicious nodes, a blacklist is maintained, and if a neighbour identifies a node as malicious, it excludes packets from that node. Meanwhile, the neighbour continues sending packets to the malicious node, except for broadcast packets, which are dropped. If a node is found to forward no packets or only some packets by all its neighbours, any reply it gives to route requests is disregarded, and any request it initiates is ignored. Successful data reception at the destination indicates that hop-based data delivery maintains a record of successful transmissions. The proposed security scheme demonstrates improved performance

    Route discovery based on energy-distance aware routing scheme for MANET

    Get PDF
    Route discovery proses in a Mobile Ad hoc Network (MANET) is challenging due to the limitation of energy at each network node. The energy constraint limits network connection lifetime thus affecting the routing process. Therefore, it is necessary for each node in the network to calculate routing factor in terms of energy and distance in deciding optimal candidate relay nodes needed to forward packets. This study proposes a new route discovery mechanism called the Energy-Distance Routing Aware (EDRA) that determines the selection of nodes during route discovery process to improve the network connection lifetime. This mechanism comprises of three schemes namely the Energy-Distance Factor Aware (EDFA), the Energy-Distance Forward Strategy (EDFS), and the Energy-Aware Route Selection (EARS). The EDFA scheme begins by calculating each nodes energy level (ei) and the distance (di) to the neighbouring nodes to produce the energy-distance factor value used in selecting the relay nodes. Next, the EDFS scheme forwards route request packets within discovery area of relay nodes based on the number of nodes. Then, the EARS scheme selects stable routing path utilising updated status information from EDFA and EDFS. The evaluation of EDRA mechanism is performed using network simulator Ns2 based on a defined set of performance metrics, scenarios and network scalability. The experimental results show that the EDRA gains significant improvement in the network connection lifetime when compared to those of the similar mechanisms, namely the AODV and the DREAM. EDRA also optimises energy consumption by utilising efficient forwarding decisions on varying scale of network nodes. Moreover, EDRA maximizes network connection lifetime while preserving throughput and packet drop ratio. This study contributes toward developing an efficient energy-aware routing to sustain longer network connection lifetime in MANET environment. The contribution is significant in promoting the use of green and sustainable next generation network technology
    • …
    corecore