1,045 research outputs found

    Secure Routing in Wireless Mesh Networks

    Get PDF
    Wireless mesh networks (WMNs) have emerged as a promising concept to meet the challenges in next-generation networks such as providing flexible, adaptive, and reconfigurable architecture while offering cost-effective solutions to the service providers. Unlike traditional Wi-Fi networks, with each access point (AP) connected to the wired network, in WMNs only a subset of the APs are required to be connected to the wired network. The APs that are connected to the wired network are called the Internet gateways (IGWs), while the APs that do not have wired connections are called the mesh routers (MRs). The MRs are connected to the IGWs using multi-hop communication. The IGWs provide access to conventional clients and interconnect ad hoc, sensor, cellular, and other networks to the Internet. However, most of the existing routing protocols for WMNs are extensions of protocols originally designed for mobile ad hoc networks (MANETs) and thus they perform sub-optimally. Moreover, most routing protocols for WMNs are designed without security issues in mind, where the nodes are all assumed to be honest. In practical deployment scenarios, this assumption does not hold. This chapter provides a comprehensive overview of security issues in WMNs and then particularly focuses on secure routing in these networks. First, it identifies security vulnerabilities in the medium access control (MAC) and the network layers. Various possibilities of compromising data confidentiality, data integrity, replay attacks and offline cryptanalysis are also discussed. Then various types of attacks in the MAC and the network layers are discussed. After enumerating the various types of attacks on the MAC and the network layer, the chapter briefly discusses on some of the preventive mechanisms for these attacks.Comment: 44 pages, 17 figures, 5 table

    MCDR: Mitigating Congestion using Distance based Routing in Wireless Sensor Networks

    Get PDF
    The network performance in WSNs is mainly affected by the congestion due to bursty traffic. Congestion can cause large packet drops, increased energy consumption and latency. Different traffic rate control mechanisms have proposed to mitigate congestion and most of these mechanisms are greatly affecting the fidelity requirement of the applications. In this paper, we proposed an algorithm named, Mitigating Congestion using Distance based Routing (MCDR) technique to mitigate congestion. This technique has successfully reduced congestion by scattering the traffic through the nodes which are placed at comparatively minimum distance from the sink and whose Queue Length is below the threshold value. The Residual Energy and Depth are two added parameters to strengthen the scattering decision. Simulation results shows that the network throughput has significantly improved with minimized latency due to the reduction of loops when compared to previous works

    Elastic hybrid MAC protocol for wireless sensor networks

    Get PDF
    The future is moving towards offering multiples services based on the same technology. Then, billions of sensors will be needed to satisfy the diversity of these services. Such considerable amount of connected devices must insure efficient data transmission for diverse applications. Wireless sensor network (WSN) represents the most preferred technology for the majority of applications. Researches in medium access control (MAC) mechanism have been of significant impact to the application growth because the MAC layer plays a major role in resource allocation in WSNs. We propose to enhance a MAC protocol of WSN to overcome traffic changes constraints. To achieve focused goal, we use elastic hybrid MAC scheme. The main interest of the developed MAC protocol is to design a medium access scheme that respect different quality of services (QoS) parameters needed by various established traffic. Simulation results show good improvement in measured parameters compared to typical protocol

    SRP-HEE: A Modified Stateless Routing Protocol based on Homomorphic Energy based Encryption for Wireless Sensor Network

    Get PDF
    Due to the wireless nature, the sensors node data are prone to location privacy of source and classification of the packet by unauthorized parties. Data encryption is one of the most effective ways to thwart unauthorized access to the data and trace information. Traditional wireless network security solutions are not viable for WSNs In this paper, a novel distributed forward aware factor based heuristics towards generating greedy routing using stateless routing is SRP-HEE for wireless sensor network. The model employs the homomorphic Energy based encryption technique. Energy based Encryption model is devoted as homomorphic mechanism due to their less computational complexity. Additionally, privacy constraint becoming a critical issue in the wireless sensor networks (WSNs) because sensor nodes are generally prone to attacks which deplete energy quickly as it is exposed to mobile sink frequently for data transmission. Through inclusion of the Forward aware factor on the Greedy routing strategies, it is possible to eliminate the attacking node which is depleting the energy of the source node. Heuristic conditions are used for optimizing the sampling rate and battery level for tackling the battery capacity constraints of the wireless sensor nodes. The Node characteristics of the propagating node have been analysed utilizing kalman filter and linear regression. The cooperative caching of the network information will enable to handle the fault condition by changing the privacy level of the network. The Simulation results demonstrate that SRP-HEE model outperforms existing technique on basis of Latency, Packet Delivery Ratio, Network Overhead, and Energy Utilization of nodes

    DMP: Detouring Using Multiple Paths against Jamming Attack for Ubiquitous Networking System

    Get PDF
    To successfully realize the ubiquitous network environment including home automation or industrial control systems, it is important to be able to resist a jamming attack. This has recently been considered as an extremely threatening attack because it can collapse the entire network, despite the existence of basic security protocols such as encryption and authentication. In this paper, we present a method of jamming attack tolerant routing using multiple paths based on zones. The proposed scheme divides the network into zones, and manages the candidate forward nodes of neighbor zones. After detecting an attack, detour nodes decide zones for rerouting, and detour packets destined for victim nodes through forward nodes in the decided zones. Simulation results show that our scheme increases the PDR (Packet Delivery Ratio) and decreases the delay significantly in comparison with rerouting by a general routing protocol on sensor networks, AODV (Ad hoc On Demand Distance Vector), and a conventional JAM (Jammed Area Mapping) service with one reroute

    Clustering objectives in wireless sensor networks: A survey and research direction analysis

    Get PDF
    Wireless Sensor Networks (WSNs) typically include thousands of resource-constrained sensors to monitor their surroundings, collect data, and transfer it to remote servers for further processing. Although WSNs are considered highly flexible ad-hoc networks, network management has been a fundamental challenge in these types of net- works given the deployment size and the associated quality concerns such as resource management, scalability, and reliability. Topology management is considered a viable technique to address these concerns. Clustering is the most well-known topology management method in WSNs, grouping nodes to manage them and/or executing various tasks in a distributed manner, such as resource management. Although clustering techniques are mainly known to improve energy consumption, there are various quality-driven objectives that can be realized through clustering. In this paper, we review comprehensively existing WSN clustering techniques, their objectives and the network properties supported by those techniques. After refining more than 500 clustering techniques, we extract about 215 of them as the most important ones, which we further review, catergorize and classify based on clustering objectives and also the network properties such as mobility and heterogeneity. In addition, statistics are provided based on the chosen metrics, providing highly useful insights into the design of clustering techniques in WSNs.publishedVersio
    • …
    corecore