1,426 research outputs found

    CDS-MIP: CDS-based Multiple Itineraries Planning for mobile agents in wireless sensor network

    Get PDF
    using multi agents in the wireless sensor networks (WSNs) for aggregating data has gained significant attention. Planning the optimal itinerary of the mobile agent is an essential step before the process of data gathering. Many approaches have been proposed to solve the problem of planning MAs itineraries, but all of those approaches are assuming that the MAs visit all SNs and large number of intermediate nodes. This assumption imposed a burden; the size of agent increases with the increase in the visited SNs, therefore consume more energy and spend more time in its migration. None of those proposed approaches takes into account the significant role that the connected dominating nodes play as virtual infrastructure in such wireless sensor networks WSNs. This article introduces a novel energy-efficient itinerary planning algorithmic approach based on the minimum connected dominating sets (CDSs) for multi-agents dedicated in data gathering process. In our proposed approach, instead of planning the itineraries over all sensor nodes SNs, we plan the itineraries among subsets of the MCDS in each cluster. Thus, no need to move the agent in all the SNs, and the intermediate nodes (if any) in each itinerary will be few. Simulation results have demonstrated that our approach is more efficient than other approaches in terms of overall energy consumption and task execution time

    Novel Approach using Robust Routing Protocol in Underwater Acoustic Wireless Sensor Network with Network Simulator 2: A Review

    Get PDF
    In recent year wireless sensor network has been an emerging technology and promising technology in unveiling the riddle of the marine life and other underwater applications. As it is a permutation of computation, sensing and communication. In the 70% of the earth a huge amount of unexploited resources lies covered by oceans. To coordinate interact and share information among themselves to carry out sensing and monitoring function underwater sensor network consists number of various sensors and autonomous underwater vehicles deployed underwater. The two most fundamental problems in underwater sensor network are sensing coverage and network connectivity. The coverage problem reflects how well a sensor network is tracked or monitored by sensors. An underwater wireless sensor networks is the emerging field that is having the challenges in each field such as the deployment of nodes, routing, floating movement of sensors etc. This paper is concerned about the underwater acoustic wireless sensor network of routing protocol applications and UW-ASNs deployments for monitoring and control of underwater domains

    A Theoretical Review of Topological Organization for Wireless Sensor Network

    Get PDF
    The recent decades have seen the growth in the fields of wireless communication technologies, which has made it possible to produce components with a rational cost of a few cubic millimeters of volume, called sensors. The collaboration of many of these wireless sensors with a basic base station gives birth to a network of wireless sensors. The latter faces numerous problems related to application requirements and the inadequate abilities of sensor nodes, particularly in terms of energy. In order to integrate the different models describing the characteristics of the nodes of a WSN, this paper presents the topological organization strategies to structure its communication. For large networks, partitioning into sub-networks (clusters) is a technique used to reduce consumption, improve network stability and facilitate scalability

    Energy efficient clustering using the AMHC (adoptive multi-hop clustering) technique

    Get PDF
    IoT has gained fine attention in several field such as in industry applications, agriculture, monitoring, surveillance, similarly parallel growth has been observed in field of WSN. WSN is one of the primary component of IoT when it comes to sensing the data in various environment. Clustering is one of the basic approach in order to obtain the measurable performance in WSNs, Several algorithms of clustering aims to obtain the efficient data collection, data gathering and the routing. In this paper, a novel AMHC (Adaptive Multi-Hop Clustering) algorithm is proposed for the homogenous model, the main aim of algorithm is to obtain the higher efficiency and make it energy efficient. Our algorithm mainly contains the three stages: namely assembling, coupling and discarding. First stage involves the assembling of independent sets (maximum), second stage involves the coupling of independent sets and at last stage the superfluous nodes are discarded. Discarding superfluous nodes helps in achieving higher efficiency. Since our algorithm is a coloring algorithm, different color are used at the different stages for coloring the nodes. Afterwards our algorithm (AMHC) is compared with the existing system which is a combination of Second order data CC(Coupled Clustering) and Compressive-Projection PCA(Principal Component Analysis), and results shows that our algorithm excels in terms of several parameters such as energy efficiency, network lifetime, number of rounds performed

    Mobile Data Gathering Techniques in WSN: A Review

    Get PDF
    Wireless sensor networks have received increasing attention in the recent few years. In many military and civil applications of sensor networks, sensors are constrained in onboard energy supply and are left unattended. Energy, size and cost constraints of such sensors limit their communication range.In this paper, we examine the proposed loadbalancing algorithms for wireless sensor network.It is used to extend the lifetime of a wireless sensor network which is the main issue in WSN by reducing energy consumption.It can also increase network scalability. In this paper, we implemented proposed method on Load Balancing algorithm for wireless sensor networks which can achieve both energy balancing and energy efficiency for all sensor nodes

    Unified Role Assignment Framework For Wireless Sensor Networks

    Get PDF
    Wireless sensor networks are made possible by the continuing improvements in embedded sensor, VLSI, and wireless radio technologies. Currently, one of the important challenges in sensor networks is the design of a systematic network management framework that allows localized and collaborative resource control uniformly across all application services such as sensing, monitoring, tracking, data aggregation, and routing. The research in wireless sensor networks is currently oriented toward a cross-layer network abstraction that supports appropriate fine or course grained resource controls for energy efficiency. In that regard, we have designed a unified role-based service paradigm for wireless sensor networks. We pursue this by first developing a Role-based Hierarchical Self-Organization (RBSHO) protocol that organizes a connected dominating set (CDS) of nodes called dominators. This is done by hierarchically selecting nodes that possess cumulatively high energy, connectivity, and sensing capabilities in their local neighborhood. The RBHSO protocol then assigns specific tasks such as sensing, coordination, and routing to appropriate dominators that end up playing a certain role in the network. Roles, though abstract and implicit, expose role-specific resource controls by way of role assignment and scheduling. Based on this concept, we have designed a Unified Role-Assignment Framework (URAF) to model application services as roles played by local in-network sensor nodes with sensor capabilities used as rules for role identification. The URAF abstracts domain specific role attributes by three models: the role energy model, the role execution time model, and the role service utility model. The framework then generalizes resource management for services by providing abstractions for controlling the composition of a service in terms of roles, its assignment, reassignment, and scheduling. To the best of our knowledge, a generic role-based framework that provides a simple and unified network management solution for wireless sensor networks has not been proposed previously

    "Hierarchical routing in sensor networks using κ-dominating sets "

    Get PDF
    Michael Q. Rieck is an associate professor at Drake University in Des Moines, Iowa, USA. He holds a Ph. D. in mathematics from the University of South Florida. His primary research interests are in the areas of camera tracking and ad hoc wireless networks. He has also published results in the areas of triangle geometry, discrete mathematics, linear algebra, finite fields and association schemes.For a connected graph, representing a sensor network, distributed algorithms for the Set Covering Problem can be employed to construct reasonably small subsets of the nodes, called k-SPR sets. Such a set can serve as a virtual backbone to facilitate shortest path routing, as introduced in [4] and [14]. When employed in a hierarchical fashion, together with a hybrid (partly proactive, partly reactive) strategy, the κ-SPR set methods become highly scalable, resulting in guaranteed minimal path routing, with comparatively little overhead. © Springer-Verlag Berlin Heidelberg 2005
    • …
    corecore