272 research outputs found

    Public key cryptography in resource-constrained WSN

    Get PDF
    In this paper we present a detailed review of the works on public key cryptography (PKC) in wireless sensor networks (WSNs). In the early days of sensor networks, public key cryptography was thought to be completely unfeasible considering its computational complexity and energy requirements. By this time, several works have proved that the lightweight versions of many well-known public key algorithms can be utilized in WSN environment. With the expense of a little energy, public key based schemes could in fact be the best choice for ensuring data security in high-security demanding WSN applications. Here, we talk about the notion of public key cryptography in WSN, its applicability, challenges in its implementation, and present a detailed study of the significant works on PKC in WSN

    Dialable Cryptography for Wireless Networks

    Get PDF
    The objective of this research is to develop an adaptive cryptographic protocol, which allows users to select an optimal cryptographic strength and algorithm based upon the hardware and bandwidth available and allows users to reason about the level of security versus the system throughput. In this constantly technically-improving society, the ability to communicate via wireless technology provides an avenue for delivering information at anytime nearly anywhere. Sensitive or classified information can be transferred wirelessly across unsecured channels by using cryptographic algorithms. The research presented will focus on dynamically selecting optimal cryptographic algorithms and cryptographic strengths based upon the hardware and bandwidth available. The research will explore the performance of transferring information using various cryptographic algorithms and strengths using different CPU and bandwidths on various sized packets or files. This research will provide a foundation for dynamically selecting cryptographic algorithms and key sizes. The conclusion of the research provides a selection process for users to determine the best cryptographic algorithms and strengths to send desired information without waiting for information security personnel to determine the required method for transferring. This capability will be an important stepping stone towards the military’s vision of future Net-Centric Warfare capabilities

    Algorithm based on Booth's Encoding Pattern for Fast Scalar Point Multiplication for ECC in Wireless Sensor Networks

    Get PDF
    With the rapid increase of small devices and its usage, a better suitable security providing mechanism must be incorported keeping the resource constraints of the devices in mind. Elliptic Curve Cryptography (ECC) serves the best and highly suitable for wireless sensor Networks (WSN) in providing security because of its smaller key size and its high strength of security against Elliptic Curve Discrete Logarithm Problem (ECDLP) than any other public-Key Cryptographic Systems. But there is a scope to reduce key calculation time to meet the potential appli- cations, without compromising in level of security in particular for wireless sensor networks. Scalar Multiplication is the costliest operation among the operations in Elliptic Curve Cryptography which takes 80% of key calculation time on WSN motes. This research proposes an algorithm based on Booth's Encoding Pattern, o®ering minimal Hamming Weight and signi¯cantly reduces the computational cost of scalar multiplication. Simulation results has proved that the Booth's en-coded pattern performs better over the existing techniques if there are atleast 46% number of 1's in the key on an average

    An Efficient Secure Message Transmission in Mobile Ad Hoc Networks using Enhanced Homomorphic Encryption Scheme

    Get PDF
    In MANETs the nodes are capable of roaming independently. The node with inadequate physical protection can be easily captured, compromised and hijacked. Due to this huge dependency's on the nodes, there are more security problems. Therefore the nodes in the network must be prepared to work in a mode that trusts no peer. In this paper we look at the current scheme to transmit the data in MANETs. We then propose a new scheme for secure transmission of message in MANETs as Alternative scheme for DF2019;s new Ph and DF2019;s additive and multiplicative PH. Here we also provide the computational cost of the homomorphic encryption schemes. We also provide the implementation issues of our new scheme in MANETs. For the entire message to be recoverd by the attacker, the attacker needs to compromise atleast g nodes, one node from each group g and know the encryption keys to decrypt the message. The success rate of our proposed new scheme is 100% if there are more number of active paths in each group of the network

    REISCH: incorporating lightweight and reliable algorithms into healthcare applications of WSNs

    Get PDF
    Healthcare institutions require advanced technology to collect patients' data accurately and continuously. The tradition technologies still suffer from two problems: performance and security efficiency. The existing research has serious drawbacks when using public-key mechanisms such as digital signature algorithms. In this paper, we propose Reliable and Efficient Integrity Scheme for Data Collection in HWSN (REISCH) to alleviate these problems by using secure and lightweight signature algorithms. The results of the performance analysis indicate that our scheme provides high efficiency in data integration between sensors and server (saves more than 24% of alive sensors compared to traditional algorithms). Additionally, we use Automated Validation of Internet Security Protocols and Applications (AVISPA) to validate the security procedures in our scheme. Security analysis results confirm that REISCH is safe against some well-known attacks

    Security of Wireless Sensor Networks: Current Status and Key Issues

    Get PDF
    corecore