5,560 research outputs found

    A BLE-based multi-gateway network infrastructure with handover support for mobile BLE peripherals

    Get PDF
    Bluetooth Low Energy (BLE) is a popular technology within the Internet of Things. It allows low-power, star networks to be set up between a BLE gateway and multiple, power-constrained BLE devices. However, these networks tend to be static, not supporting BLE devices that can freely move around in an environment of multiple interconnected BLE gateways and perform handovers whenever necessary. This work proposes two alternative network architectures for mobile BLE peripherals. One leverages on IPv6 over BLE, whereas the other combines default BLE mechanisms with an additional custom controller. On top, we study in detail the handover mechanism that must be present in both architectures and compare the performance of both a passive and active handover approach. The passive handover approach can be set up without any extra implementation, but an active handover approach offers more proactive handover decisions and can provide a much lower handover latency. All proposed solutions have been implemented and validated on real hardware, showing the feasibility of having future infrastructures with support for mobile BLE devices

    Service discovery at home

    Get PDF
    Service discovery is a fairly new field that kicked off since the advent of ubiquitous computing and has been found essential in the making of intelligent networks by implementing automated discovery and remote control between devices. This paper provides an overview and comparison of several prominent service discovery mechanisms currently available. It also introduces the at home anywhere service discovery protocol (SDP@HA) design which improves on the current state of the art by accommodating resource lean devices, implementing a dynamic leader election for a central cataloguing device and embedding robustness to the service discovery architecture as an important criterion

    Technologies and solutions for location-based services in smart cities: past, present, and future

    Get PDF
    Location-based services (LBS) in smart cities have drastically altered the way cities operate, giving a new dimension to the life of citizens. LBS rely on location of a device, where proximity estimation remains at its core. The applications of LBS range from social networking and marketing to vehicle-toeverything communications. In many of these applications, there is an increasing need and trend to learn the physical distance between nearby devices. This paper elaborates upon the current needs of proximity estimation in LBS and compares them against the available Localization and Proximity (LP) finding technologies (LP technologies in short). These technologies are compared for their accuracies and performance based on various different parameters, including latency, energy consumption, security, complexity, and throughput. Hereafter, a classification of these technologies, based on various different smart city applications, is presented. Finally, we discuss some emerging LP technologies that enable proximity estimation in LBS and present some future research areas
    corecore