129 research outputs found

    SwarMAV: A Swarm of Miniature Aerial Vehicles

    Get PDF
    As the MAV (Micro or Miniature Aerial Vehicles) field matures, we expect to see that the platform's degree of autonomy, the information exchange, and the coordination with other manned and unmanned actors, will become at least as crucial as its aerodynamic design. The project described in this paper explores some aspects of a particularly exciting possible avenue of development: an autonomous swarm of MAVs which exploits its inherent reliability (through redundancy), and its ability to exchange information among the members, in order to cope with a dynamically changing environment and achieve its mission. We describe the successful realization of a prototype experimental platform weighing only 75g, and outline a strategy for the automatic design of a suitable controller

    Quadrotor Flight Performance

    Get PDF

    Optimum battery weight for maximizing available energy in UAV-enabled wireless communications

    Get PDF
    Battery-powered unmanned aerial vehicles (UAVs) have been widely used as enablers of wireless networks. In this letter, the optimal battery weight for UAV-enabled wireless sensor networks is studied. The energy available for communication by considering propulsion energy consumption is maximized. Both numerical and approximate solutions to the optimal battery weight are derived. Numerical results show that both vertical and horizontal flight speeds and the gross weight of the UAV have great impact on the optimal battery weight

    Aerial Vehicles

    Get PDF
    This book contains 35 chapters written by experts in developing techniques for making aerial vehicles more intelligent, more reliable, more flexible in use, and safer in operation.It will also serve as an inspiration for further improvement of the design and application of aeral vehicles. The advanced techniques and research described here may also be applicable to other high-tech areas such as robotics, avionics, vetronics, and space

    Rotorcraft systems for urban air mobility: a reality check

    Get PDF
    “Urban air vehicles” have been hailed as the next revolution in aviation. Prototypes of various sizes have been flown to demonstrate basic flight (hover and climb), but in most cases there is no demonstration of full flight capability, for example conversion from vertical to level flight (conversion corridor). There are proposals for vehicles in a wide range of scales: from drones specifically designed to deliver goods, to full size vehicles for manned transportation. Most of the concepts proposed include full electric propulsion, multiple (often convertible) rotors (ducted or un-ducted, counter-rotating), and widespread use of composite materials. Start-up companies are seeking funding with high-profile demonstrations in front of the media, but many unresolved technical problems are not been solved. Large aerospace companies have joined the fray. These initiatives are fuelling expectations that achieving the next milestone is within easy reach. This paper aims to fill some gaps in understanding and curb optimism. It takes a holistic view in order to establish a scientific basis for design, manufacturing, operations

    12th EASN International Conference on "Innovation in Aviation & Space for opening New Horizons"

    Get PDF
    Epoxy resins show a combination of thermal stability, good mechanical performance, and durability, which make these materials suitable for many applications in the Aerospace industry. Different types of curing agents can be utilized for curing epoxy systems. The use of aliphatic amines as curing agent is preferable over the toxic aromatic ones, though their incorporation increases the flammability of the resin. Recently, we have developed different hybrid strategies, where the sol-gel technique has been exploited in combination with two DOPO-based flame retardants and other synergists or the use of humic acid and ammonium polyphosphate to achieve non-dripping V-0 classification in UL 94 vertical flame spread tests, with low phosphorous loadings (e.g., 1-2 wt%). These strategies improved the flame retardancy of the epoxy matrix, without any detrimental impact on the mechanical and thermal properties of the composites. Finally, the formation of a hybrid silica-epoxy network accounted for the establishment of tailored interphases, due to a better dispersion of more polar additives in the hydrophobic resin

    On the effects of optimal implementation of variable rotor speed and power management on hybrid-electric rotorcraft

    Get PDF
    The concept of Variable Rotor Speed (VRS) has been recognized as an efficient means to improve rotorcraft operational performance and environmental impact, with electrification being a potential technology to further contribute to that. This paper explores the impact of optimal implementation and scheduling of VRS and power management strategy for conventional and hybrid-electric rotorcraft on energy, fuel, and emissions footprint. A multidisciplinary simulation framework for rotorcraft performance combined with models for engine performance and gaseous emissions estimation is deployed. A holistic optimization approach is developed for the derivation of globally optimal schedules for combined rotor speed and power split targeting minimum energy consumption. Application of the derived optimal schedules at mission level resulted to a 6% improvement in range capability for the VRS tilt-rotor relative to its conventional counterpart. For the hybrid-electric tilt-rotor, combined optimization of VRS and power management leads to an increase in range to 18.4% at 40% and 25% reduced payload for current (250 Wh/kg) and future (450 Wh/kg) battery technology, respectively. For representative Urban Air Mobility (UAM) scenarios, it is demonstrated that the VRS concept resulted in up to 10% and 14% reductions in fuel burn and NOX relative to the nominal rotor speed case, respectively. The utilization of the combined optimum VRS and power split schedules can boost performance with reductions of the order of 20%and 25% in mission fuel/CO2 and NOX at a reduced payload relative to the conventional tilt-rotor

    Aeronautical engineering: A continuing bibliography with indexes (supplement 304)

    Get PDF
    This bibliography lists 453 reports, articles, and other documents introduced into the NASA scientific and technical information system in May 1994. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics

    Quadrotor: a detailed analysis on construction and operation

    Get PDF
    It is a type of an unmanned air vehicle (UAV) which by its name suggests that consists of 4 engines to drive it. Usually we use BLDC motors and propellers as the engines of a quad. Its motion and dynamics can be compared with that of a helicopter in regards to its transverse and longitudinal motion. It has various uses in various fields of military, business, rescue mission, modern warfare etc. They have a vertical take-off and landing system. Unlike a helicopter the propellers or blades of a “Quadrotor” have fixed pitch. Control of vehicle motion is achieved by altering the pitch and/or rotation rate of one or more rotor discs, thereby changing its torque load and thrust/lift characteristics. This will be explained in details in course of the following discussion. If we look into history of the “Quadrotor”, we get to know that it was the first step towards vertical take-off and landing vehicle. At first it was a manned vehicle but now mainly the research is focused upon a unmanned “Quadrotor” which is controlled with the help of electronic signals and various other mechanisms

    Aeronautical enginnering: A cumulative index to a continuing bibliography (supplement 312)

    Get PDF
    This is a cumulative index to the abstracts contained in NASA SP-7037 (301) through NASA SP-7073 (311) of Aeronautical Engineering: A Continuing Bibliography. NASA SP-7037 and its supplements have been compiled by the Center for AeroSpace Information of the National Aeronautics and Space Administration (NASA). This cumulative index includes subject, personal author, corporate source, foreign technology, contract number, report number, and accession number indexes
    corecore