1,501 research outputs found

    Endoscopic navigation in the absence of CT imaging

    Full text link
    Clinical examinations that involve endoscopic exploration of the nasal cavity and sinuses often do not have a reference image to provide structural context to the clinician. In this paper, we present a system for navigation during clinical endoscopic exploration in the absence of computed tomography (CT) scans by making use of shape statistics from past CT scans. Using a deformable registration algorithm along with dense reconstructions from video, we show that we are able to achieve submillimeter registrations in in-vivo clinical data and are able to assign confidence to these registrations using confidence criteria established using simulated data.Comment: 8 pages, 3 figures, MICCAI 201

    Optical techniques for 3D surface reconstruction in computer-assisted laparoscopic surgery

    Get PDF
    One of the main challenges for computer-assisted surgery (CAS) is to determine the intra-opera- tive morphology and motion of soft-tissues. This information is prerequisite to the registration of multi-modal patient-specific data for enhancing the surgeon’s navigation capabilites by observ- ing beyond exposed tissue surfaces and for providing intelligent control of robotic-assisted in- struments. In minimally invasive surgery (MIS), optical techniques are an increasingly attractive approach for in vivo 3D reconstruction of the soft-tissue surface geometry. This paper reviews the state-of-the-art methods for optical intra-operative 3D reconstruction in laparoscopic surgery and discusses the technical challenges and future perspectives towards clinical translation. With the recent paradigm shift of surgical practice towards MIS and new developments in 3D opti- cal imaging, this is a timely discussion about technologies that could facilitate complex CAS procedures in dynamic and deformable anatomical regions

    Medical image computing and computer-aided medical interventions applied to soft tissues. Work in progress in urology

    Full text link
    Until recently, Computer-Aided Medical Interventions (CAMI) and Medical Robotics have focused on rigid and non deformable anatomical structures. Nowadays, special attention is paid to soft tissues, raising complex issues due to their mobility and deformation. Mini-invasive digestive surgery was probably one of the first fields where soft tissues were handled through the development of simulators, tracking of anatomical structures and specific assistance robots. However, other clinical domains, for instance urology, are concerned. Indeed, laparoscopic surgery, new tumour destruction techniques (e.g. HIFU, radiofrequency, or cryoablation), increasingly early detection of cancer, and use of interventional and diagnostic imaging modalities, recently opened new challenges to the urologist and scientists involved in CAMI. This resulted in the last five years in a very significant increase of research and developments of computer-aided urology systems. In this paper, we propose a description of the main problems related to computer-aided diagnostic and therapy of soft tissues and give a survey of the different types of assistance offered to the urologist: robotization, image fusion, surgical navigation. Both research projects and operational industrial systems are discussed

    Advances in ENT imaging

    Get PDF
    Over the last ten years or so radiology has shown dramatic technological developments especially in cross sectional imaging and the investigation and management of the complex ENT patient has benefitted enormously. Plain radiographs are being utilised less and less as their limitations are becoming more apparent and various studies have shown for example a 75% discrepancy between plain sinus radiographs and coronal sinus CT in children1,2 . The incorporation of small and flexible ultrasound transducers with high-resolution imaging into the tips of endoluminal catheters has allowed good quality endoluminal ultrasound. Recently endolaryngeal ultrasound has been clinically evaluated in 38 patients with a variety of laryngeal pathology including vocal fold polyps, laryngeal cysts, chronic laryngitis, epithelial dysplasia and cancer 5 . Using this technique tumour size and infiltration could be measured and involvement of the thyroid cartilage or anterior commissure could be visualised. Not surprisingly it was not able to detect any specific changes in the sonographic picture of patients suffering from chronic laryngitis, epithelial dysplasia or microinvasive cancer. Although these results are encouraging, its relative lack of availability will result in it only having a limited role in evaluating laryngeal pathology.peer-reviewe

    Neuronavigation and intraoperative imaging system in orbital tumor surgery: a review of recent literature

    Get PDF
    Orbit is a small complex anatomic space that contains important structures, ocular globe, extrinsic muscles, cranial nerves, blood vessels, fat, lacrimal gland. In presence of orbital tumors it is mandatory to use a surgical approach that allows to achieve an adequate surgical field while preserving neurological function. Neuronavigation is the set of computer-assisted technologies used to guide or "navigate” the edges of the tumor to allow the surgeon during resection or biopsy. This technology started with use of CT data to get some landmarks of human anatomy defined “targets” that could be readily used in surgery. Finally, the evolution of modern neuroimaging technologies such intraoperative CT and MRI boosted the surgery accuracy. In order to identify advantages and practical use of these technologies we performed a nonsystematic review of the current literature using the keywords “orbital tumor or orbital neoplasia or orbital mass or orbital lesion” and “neuronavigation or navigation” published in last 10 years. We evaluated 29 papers and we can conclude that navigation in orbital surgery helps to reduce surgical damage while at the same time, allowing a more radical tumor resection. CT and MRI scans are complementary in diagnosing and in intraoperative navigation allow the surgeon to avoid and preserve vital structures, particularly in a complex surgical procedure without real anatomical landmarks for intraoperative orientation. Future is going towards rapid changes and the integration with intraoperative procedures is carrying on to new technologies further our contemporary bounds

    Endoscopic Surgery for Third Ventricular Colloid Cysts in the Absence of Hydrocephalus- a feasibility study

    Get PDF
    Purpose: The aim of this study was to investigate the feasibility and effectiveness of endoscopic neurosurgery for patients with third ventricular colloid cysts without ventriculomegaly.Methods: Seventy-one patients with third ventricular colloid cysts were identified and recruited to this study. Eighteen of these patients did not have concomitant hydrocephalus and underwent primary endoscopic surgery for cyst resection. The surgical technique, the success rate, and patients’ outcome were assessed and compared with 53 hydrocephalic patients who underwent similar procedures.Results: The ventricular compartments were successfully cannulated and gross total resectin of the colloid cysts was achieved in all patients. There were no operative complications related to the endoscopic procedure. Two patients required subsequent intervention for hydrocephalus. The success rate for endoscopic surgery in non-hydrocephalic patients was similar to its value in patients with hydrocephalus.Conclusion: Endoscopic resection of third ventricular colloid cyst in patients without hydrocephalus seems to be feasible, effective and not contraindicated

    Advanced Endoscopic Navigation:Surgical Big Data,Methodology,and Applications

    Get PDF
    随着科学技术的飞速发展,健康与环境问题日益成为人类面临的最重大问题之一。信息科学、计算机技术、电子工程与生物医学工程等学科的综合应用交叉前沿课题,研究现代工程技术方法,探索肿瘤癌症等疾病早期诊断、治疗和康复手段。本论文综述了计算机辅助微创外科手术导航、多模态医疗大数据、方法论及其临床应用:从引入微创外科手术导航概念出发,介绍了医疗大数据的术前与术中多模态医学成像方法、阐述了先进微创外科手术导航的核心流程包括计算解剖模型、术中实时导航方案、三维可视化方法及交互式软件技术,归纳了各类微创外科手术方法的临床应用。同时,重点讨论了全球各种手术导航技术在临床应用中的优缺点,分析了目前手术导航领域内的最新技术方法。在此基础上,提出了微创外科手术方法正向数字化、个性化、精准化、诊疗一体化、机器人化以及高度智能化的发展趋势。【Abstract】Interventional endoscopy (e.g., bronchoscopy, colonoscopy, laparoscopy, cystoscopy) is a widely performed procedure that involves either diagnosis of suspicious lesions or guidance for minimally invasive surgery in a variety of organs within the body cavity. Endoscopy may also be used to guide the introduction of certain items (e.g., stents) into the body. Endoscopic navigation systems seek to integrate big data with multimodal information (e.g., computed tomography, magnetic resonance images, endoscopic video sequences, ultrasound images, external trackers) relative to the patient's anatomy, control the movement of medical endoscopes and surgical tools, and guide the surgeon's actions during endoscopic interventions. Nevertheless, it remains challenging to realize the next generation of context-aware navigated endoscopy. This review presents a broad survey of various aspects of endoscopic navigation, particularly with respect to the development of endoscopic navigation techniques. First, we investigate big data with multimodal information involved in endoscopic navigation. Next, we focus on numerous methodologies used for endoscopic navigation. We then review different endoscopic procedures in clinical applications. Finally, we discuss novel techniques and promising directions for the development of endoscopic navigation.X.L. acknowledges funding from the Fundamental Research Funds for the Central Universities. T.M.P. acknowledges funding from the Canadian Foundation for Innovation, the Canadian Institutes for Health Research, the National Sciences and Engineering Research Council of Canada, and a grant from Intuitive Surgical Inc

    Endoscopic Technologies for Peripheral Pulmonary Lesions: From Diagnosis to Therapy

    Get PDF
    Peripheral pulmonary lesions (PPLs) are frequent incidental findings in subjects when performing chest radiographs or chest computed tomography (CT) scans. When a PPL is identified, it is necessary to proceed with a risk stratification based on the patient profile and the characteristics found on chest CT. In order to proceed with a diagnostic procedure, the first-line examination is often a bronchoscopy with tissue sampling. Many guidance technologies have recently been developed to facilitate PPLs sampling. Through bronchoscopy, it is currently possible to ascertain the PPL’s benign or malignant nature, delaying the therapy’s second phase with radical, supportive, or palliative intent. In this review, we describe all the new tools available: from the innovation of bronchoscopic instrumentation (e.g., ultrathin bronchoscopy and robotic bronchoscopy) to the advances in navigation technology (e.g., radial-probe endobronchial ultrasound, virtual navigation, electromagnetic navigation, shape-sensing navigation, cone-beam computed tomography). In addition, we summarize all the PPLs ablation techniques currently under experimentation. Interventional pulmonology may be a discipline aiming at adopting increasingly innovative and disruptive technologies
    corecore