157 research outputs found

    Multi-axis Stiffness Sensing Device for Medical Palpation

    Get PDF
    This paper presents an innovative hand-held device able to compute stiffness when interacting with a soft object. The device is composed of four linear indenters and a USB camera. The stiffness is computed in real-time, tracking the movements of spherical features in the image of the camera. Those movements relate to the movements of the four indenters when interacting with a soft surface. Since the indenters are connected to springs with different spring constants, the displacement of the indenters varies when interacting with a soft object. The proposed multi-indenting device allows measuring the object's stiffness as well as the pan and tilt angles between the sensor and the surface of the soft object. Tests were performed to evaluate the accuracy of the proposed palpation mechanism against commercial springs of known stiffness. Results show that the accuracy and sensitivity of the proposed device increases with the softness of the examined object. Preliminary tests with silicon show the ability of the sensing mechanism to characterize phantom soft tissue for small indentation. It is noted that the results are not affected by the orientation of the device when probing the surface. The proposed sensing device can be used in different applications, such as external palpation for diagnosis or, if miniaturized, embedded on an endoscopic camera and used in Minimally Invasive Surgery (MIS)

    Disposable soft 3 axis force sensor for biomedical applications

    Get PDF

    Prevalence of haptic feedback in robot-mediated surgery : a systematic review of literature

    Get PDF
    © 2017 Springer-Verlag. This is a post-peer-review, pre-copyedit version of an article published in Journal of Robotic Surgery. The final authenticated version is available online at: https://doi.org/10.1007/s11701-017-0763-4With the successful uptake and inclusion of robotic systems in minimally invasive surgery and with the increasing application of robotic surgery (RS) in numerous surgical specialities worldwide, there is now a need to develop and enhance the technology further. One such improvement is the implementation and amalgamation of haptic feedback technology into RS which will permit the operating surgeon on the console to receive haptic information on the type of tissue being operated on. The main advantage of using this is to allow the operating surgeon to feel and control the amount of force applied to different tissues during surgery thus minimising the risk of tissue damage due to both the direct and indirect effects of excessive tissue force or tension being applied during RS. We performed a two-rater systematic review to identify the latest developments and potential avenues of improving technology in the application and implementation of haptic feedback technology to the operating surgeon on the console during RS. This review provides a summary of technological enhancements in RS, considering different stages of work, from proof of concept to cadaver tissue testing, surgery in animals, and finally real implementation in surgical practice. We identify that at the time of this review, while there is a unanimous agreement regarding need for haptic and tactile feedback, there are no solutions or products available that address this need. There is a scope and need for new developments in haptic augmentation for robot-mediated surgery with the aim of improving patient care and robotic surgical technology further.Peer reviewe

    Recent Advances in Robot-Assisted Surgery: Soft Tissue Contact Identification

    Get PDF
    Robot-Assisted Minimally Invasive Surgery (RAMIS) is becoming standard-of-care in western medicine. RAMIS offers better patient outcome compared to traditional open surgery, however, the surgeons’ ability to identify the tissues with the sense of touch is missing from most robotic systems. Regarding haptic feedback, the most promising diagnostic technique is probably palpation; a physical contact examination method through which information can be gathered about the underlying structures by gently pressing with the fingers. In open surgery, palpation is widely used to identify blood vessels, tendons or even tumors; and the knowledge on the exact location of such elements is often crucial with respect to the outcome of the intervention. This paper presents a review of the actual research directions in the field of palpation in RAMIS

    A continuum robotic platform for endoscopic non-contact laser surgery: design, control, and preclinical evaluation

    Get PDF
    The application of laser technologies in surgical interventions has been accepted in the clinical domain due to their atraumatic properties. In addition to manual application of fibre-guided lasers with tissue contact, non-contact transoral laser microsurgery (TLM) of laryngeal tumours has been prevailed in ENT surgery. However, TLM requires many years of surgical training for tumour resection in order to preserve the function of adjacent organs and thus preserve the patient’s quality of life. The positioning of the microscopic laser applicator outside the patient can also impede a direct line-of-sight to the target area due to anatomical variability and limit the working space. Further clinical challenges include positioning the laser focus on the tissue surface, imaging, planning and performing laser ablation, and motion of the target area during surgery. This dissertation aims to address the limitations of TLM through robotic approaches and intraoperative assistance. Although a trend towards minimally invasive surgery is apparent, no highly integrated platform for endoscopic delivery of focused laser radiation is available to date. Likewise, there are no known devices that incorporate scene information from endoscopic imaging into ablation planning and execution. For focusing of the laser beam close to the target tissue, this work first presents miniaturised focusing optics that can be integrated into endoscopic systems. Experimental trials characterise the optical properties and the ablation performance. A robotic platform is realised for manipulation of the focusing optics. This is based on a variable-length continuum manipulator. The latter enables movements of the endoscopic end effector in five degrees of freedom with a mechatronic actuation unit. The kinematic modelling and control of the robot are integrated into a modular framework that is evaluated experimentally. The manipulation of focused laser radiation also requires precise adjustment of the focal position on the tissue. For this purpose, visual, haptic and visual-haptic assistance functions are presented. These support the operator during teleoperation to set an optimal working distance. Advantages of visual-haptic assistance are demonstrated in a user study. The system performance and usability of the overall robotic system are assessed in an additional user study. Analogous to a clinical scenario, the subjects follow predefined target patterns with a laser spot. The mean positioning accuracy of the spot is 0.5 mm. Finally, methods of image-guided robot control are introduced to automate laser ablation. Experiments confirm a positive effect of proposed automation concepts on non-contact laser surgery.Die Anwendung von Lasertechnologien in chirurgischen Interventionen hat sich aufgrund der atraumatischen Eigenschaften in der Klinik etabliert. Neben manueller Applikation von fasergefĂŒhrten Lasern mit Gewebekontakt hat sich die kontaktfreie transorale Lasermikrochirurgie (TLM) von Tumoren des Larynx in der HNO-Chirurgie durchgesetzt. Die TLM erfordert zur Tumorresektion jedoch ein langjĂ€hriges chirurgisches Training, um die Funktion der angrenzenden Organe zu sichern und damit die LebensqualitĂ€t der Patienten zu erhalten. Die Positionierung des mikroskopis chen Laserapplikators außerhalb des Patienten kann zudem die direkte Sicht auf das Zielgebiet durch anatomische VariabilitĂ€t erschweren und den Arbeitsraum einschrĂ€nken. Weitere klinische Herausforderungen betreffen die Positionierung des Laserfokus auf der GewebeoberflĂ€che, die Bildgebung, die Planung und AusfĂŒhrung der Laserablation sowie intraoperative Bewegungen des Zielgebietes. Die vorliegende Dissertation zielt darauf ab, die Limitierungen der TLM durch robotische AnsĂ€tze und intraoperative Assistenz zu adressieren. Obwohl ein Trend zur minimal invasiven Chirurgie besteht, sind bislang keine hochintegrierten Plattformen fĂŒr die endoskopische Applikation fokussierter Laserstrahlung verfĂŒgbar. Ebenfalls sind keine Systeme bekannt, die Szeneninformationen aus der endoskopischen Bildgebung in die Ablationsplanung und -ausfĂŒhrung einbeziehen. FĂŒr eine situsnahe Fokussierung des Laserstrahls wird in dieser Arbeit zunĂ€chst eine miniaturisierte Fokussieroptik zur Integration in endoskopische Systeme vorgestellt. Experimentelle Versuche charakterisieren die optischen Eigenschaften und das Ablationsverhalten. Zur Manipulation der Fokussieroptik wird eine robotische Plattform realisiert. Diese basiert auf einem lĂ€ngenverĂ€nderlichen Kontinuumsmanipulator. Letzterer ermöglicht in Kombination mit einer mechatronischen Aktuierungseinheit Bewegungen des Endoskopkopfes in fĂŒnf Freiheitsgraden. Die kinematische Modellierung und Regelung des Systems werden in ein modulares Framework eingebunden und evaluiert. Die Manipulation fokussierter Laserstrahlung erfordert zudem eine prĂ€zise Anpassung der Fokuslage auf das Gewebe. DafĂŒr werden visuelle, haptische und visuell haptische Assistenzfunktionen eingefĂŒhrt. Diese unterstĂŒtzen den Anwender bei Teleoperation zur Einstellung eines optimalen Arbeitsabstandes. In einer Anwenderstudie werden Vorteile der visuell-haptischen Assistenz nachgewiesen. Die Systemperformanz und Gebrauchstauglichkeit des robotischen Gesamtsystems werden in einer weiteren Anwenderstudie untersucht. Analog zu einem klinischen Einsatz verfolgen die Probanden mit einem Laserspot vorgegebene Sollpfade. Die mittlere Positioniergenauigkeit des Spots betrĂ€gt dabei 0,5 mm. Zur Automatisierung der Ablation werden abschließend Methoden der bildgestĂŒtzten Regelung vorgestellt. Experimente bestĂ€tigen einen positiven Effekt der Automationskonzepte fĂŒr die kontaktfreie Laserchirurgie

    Tissue manipulation using nano-particles ferrofluids for minimal access surgical applications

    Get PDF
    Nano-scale Iron-Oxide ferrofluids exhibit a special property, ‘superparamagnetism’, that induces an attractive force toward an external magnetic field. The aim of this project is to investigate the use of ferrofluids for tissue retraction during Minimally Access Surgery (MAS). In the in-vivo porcine experiments, 0.3 ml of ferrofluid (200 mg/ml concentration) containing 10 nm particles is injected subserosally into the small bowel, respectively. A 0.6 T magnetic field is created using a combination of 10 mm and 20 mm diameter Neodymium Iron Boron magnets. The vertical retraction distance is measured up to 80 mm and video-recorded. The results demonstrate the capacity of ferrofluid to facilitate the tissue manipulation and analysis of the migration of the particles within the tissue using micro computed tomography (CT). A theoretical model developed to validate the experimental results is also beneficial for predicting retraction force. In conclusion, this feasibility study provides a protocol for systematically using small volumes of ferrofluid, without the need to mechanically grasp the tissue

    Cable-driven parallel robot for transoral laser phonosurgery

    Get PDF
    Transoral laser phonosurgery (TLP) is a common surgical procedure in otolaryngology. Currently, two techniques are commonly used: free beam and fibre delivery. For free beam delivery, in combination with laser scanning techniques, accurate laser pattern scanning can be achieved. However, a line-of-sight to the target is required. A suspension laryngoscope is adopted to create a straight working channel for the scanning laser beam, which could introduce lesions to the patient, and the manipulability and ergonomics are poor. For the fibre delivery approach, a flexible fibre is used to transmit the laser beam, and the distal tip of the laser fibre can be manipulated by a flexible robotic tool. The issues related to the limitation of the line-of-sight can be avoided. However, the laser scanning function is currently lost in this approach, and the performance is inferior to that of the laser scanning technique in the free beam approach. A novel cable-driven parallel robot (CDPR), LaryngoTORS, has been developed for TLP. By using a curved laryngeal blade, a straight suspension laryngoscope will not be necessary to use, which is expected to be less traumatic to the patient. Semi-autonomous free path scanning can be executed, and high precision and high repeatability of the free path can be achieved. The performance has been verified in various bench and ex vivo tests. The technical feasibility of the LaryngoTORS robot for TLP was considered and evaluated in this thesis. The LaryngoTORS robot has demonstrated the potential to offer an acceptable and feasible solution to be used in real-world clinical applications of TLP. Furthermore, the LaryngoTORS robot can combine with fibre-based optical biopsy techniques. Experiments of probe-based confocal laser endomicroscopy (pCLE) and hyperspectral fibre-optic sensing were performed. The LaryngoTORS robot demonstrates the potential to be utilised to apply the fibre-based optical biopsy of the larynx.Open Acces

    A Novel Bio-Inspired Insertion Method for Application to Next Generation Percutaneous Surgical Tools

    No full text
    The use of minimally invasive techniques can dramatically improve patient outcome from neurosurgery, with less risk, faster recovery, and better cost effectiveness when compared to conventional surgical intervention. To achieve this, innovative surgical techniques and new surgical instruments have been developed. Nevertheless, the simplest and most common interventional technique for brain surgery is needle insertion for either diagnostic or therapeutic purposes. The work presented in this thesis shows a new approach to needle insertion into soft tissue, focussing on soft tissue-needle interaction by exploiting microtextured topography and the unique mechanism of a reciprocating motion inspired by the ovipositor of certain parasitic wasps. This thesis starts by developing a brain-like phantom which I was shown to have mechanical properties similar to those of neurological tissue during needle insertion. Secondly, a proof-of-concept of the bio-inspired insertion method was undertaken. Based on this finding, the novel method of a multi-part probe able to penetrate a soft substrate by reciprocal motion of each segment is derived. The advantages of the new insertion method were investigated and compared with a conventional needle insertion in terms of needle-tissue interaction. The soft tissue deformation and damage were also measured by exploiting the method of particle image velocimetry. Finally, the thesis proposes the possible clinical application of a biologically-inspired surface topography for deep brain electrode implantation. As an adjunct to this work, the reciprocal insertion method described here fuelled the research into a novel flexible soft tissue probe for percutaneous intervention, which is able to steer along curvilinear trajectories within a compliant medium. Aspects of this multi-disciplinary research effort on steerable robotic surgery are presented, followed by a discussion of the implications of these findings within the context of future work
    • 

    corecore