51,246 research outputs found

    Performability of Integrated Networked Control Systems

    Get PDF
    A direct sensor to actuator communication model (S2A) for unmodified Ethernet-based Networked Control Systems (NCSs) is presented in this research. A comparison is made between the S2A model and a previously introduced model including an in-loop controller node. OMNET simulations showed the success of the S2A model in meeting system delay with strict zero packet loss (with no over-delayed packets) requirements. The S2A model also showed a reduction in the end-to-end delay of control packets from sensor nodes to actuator nodes in both Fast and Gigabit switched Ethernet-Based. Another major improvement for the S2A model is accommodating the increase in the amount of additional load compared to the in-loop model. Two different controller-level fault-tolerant models for Ethernet-based Networked Control Systems (NCSs) are also presented in this research. These models are studied using unmodified Fast and Gigabit Ethernet. The first is an in-loop fault-tolerant controller model while the second is a fault-tolerant direct Sensor to Actuator (S2A) model. Both models were shown via OMNeT++ simulations to succeed in meeting system end-to-end delay with strict zero packet loss (with no over-delayed packets) requirements. Although, it was shown that the S2A model has a lower end-to-end delay than the in-loop controller model, the fault-tolerant in-loop model performs better than the fault-tolerant S2A model in terms of less total end-to-end delay in the fault-free situation. While, on the other hand, in the scenario with the failed controller(s), the S2A model was shown to have less total end-to-end delay. Performability analysis between the two fault-tolerant models is studied and compared using fast Ethernet links relating controller failure with reward, depending on the system state. Meeting control system\u27s deadline is essential in Networked Control Systems and failing to meet this deadline represents a failure of the system. Therefore, the reward is considered to be how far is the total end-to-end delay in each state in each model from the system deadline. A case study is presented that simultaneously investigates the failure on the controller level with reward

    Scheduling Rate Constrained traffic in End Systems of Time-Aware Networks

    Get PDF
    Nowadays, most of cyber-physical systems in avionics, automotive or recent Industry 4.0 domains require networked communication for mixed-critical applications. Ethernet-based networks such as AFDX, TTEthernet or TSN are capable to support transmission of both safety-critical and non-critical flows. This paper focuses on the TTEthernet network compliant with the avionics ARINC 664-P7 standard supporting time-triggered communication (TT) together with rate-constrained (RC) and best-effort (BE) traffic. Due to a global synchronization, TTcommunication with low latency and minimal jitter is ensured with static schedules computed offline. For event-triggered RC flows, bounded jitter at the source and end-to-end latency are guaranteed with worst-case analysis methods. With the increasing demands of applications, flows with Quality of Service (QoS) requirements such as video or audio may be transmitted as BE flows. However, on current configurations, no guarantees are offered to BE flows. In this paper, we aim at increasing the maximum RC utilization and improving the QoS of BE flows to allow the transmission of video or audio traffic with low jitter and end-to-end delay requirements. For this, we focus on the scheduling mechanisms and propose a scheduling approach based on a static slotted table that is applied at end systems. This table integrates the TT schedules usually obtained with Satisfiability Modulo Theories (SMT) approaches and establishes offsets of RC flows that reduce the end-to-end delay of BE flows. Several strategies for offset computations are proposed based on the distribution of flows locally at end system or globally at switch. We show that local strategies perform better than the global ones to reduce end-to-end delay of BE flows

    Robust Stabilization of Systems with Time varying Input Delay using PI State feedback Controller

    Get PDF
    Time delays are often encountered in many practical systems, especially in the networked control systems and many industrial processes which also includes computation delay. The presence of input delays causes system instability and degrades system performance. For a nominal system with input delay, one may transform the system using a reduction method to a non-delay form and then can design a controller using techniques that are available for systems without time-delays. However, for uncertain systems, this reduction method does not transform the system into a non-time-delayed one. Due to this reason, one need to analyze such uncertain systems using analysis that are available for time-delay systems and one attempts to exploit the benefit of using the reduction method. It is studied in this work that using simple state feedback controller over the transformed model does not yield much benefit for uncertain systems. Various choices of Lyapunov-Krasovskii functional has been made to verify stability of the transformed system and establishing the above fact. At the end, it is observed that not using the transformation method but by using a PI-type state feedback controller for the non-transformed system does yield more benefit in controller design in the sense that the guaranteed robustness margin is improved considerably

    Enhanced Worst-case Timing Analysis of Ring-based Networks with Cyclic Dependencies using Network Calculus

    Get PDF
    The recent research effort towards defining new communication solutions for cyber-physical systems (CPS), to guarantee high availability level with limited cabling costs and complexity, has renewed the interest in ring-based networks. This topology has been recently used for various networked cyber-physical systems (Net-CPS), e.g., avionics and automotive, with the implementation of many Real Time Ethernet (RTE) profiles. A relevant issue for such networks is to prove timing predictability, a key requirement for safety-critical systems. For the most common ring-based Real Time Ethernet (RTE) profiles, conducting such performance analyses has been greatly simplified due to their implemented time-triggered communication scheme, e.g. Master/slave or TDMA. Unlike these existing approaches, we are interested in this paper in event-triggered ring-based networks, which guarantee high resource utilization efficiency and (re)confi\-gura\-tion flexibility, at the cost of increasing the timing analysis complexity. The implementation of such a communication scheme on top of a ring topology actually induces cyclic dependencies, in comparison to time-triggered solutions. To cope with this arising issue of cyclic dependencies, only few techniques have been proposed in the literature, mainly based on Network Calculus framework, and consist in analyzing locally the delay upper bound in each crossed node, resulting in pessimistic end-to-end delay bounds. Hence, the main contribution in this paper is enhancing the delay bounds tightness of such networks, through an innovative global analysis based on Network Calculus, considering the flow serialization phenomena along the flow path. An extensive analysis of such a proposal is conducted herein regarding the accuracy of delay bounds and its impact on the system performance, i.e., scalability and resource-efficiency; and the results highlight its outperformance, in comparison to conventional methods

    Wireless Communication in Process Control Loop: Requirements Analysis, Industry Practices and Experimental Evaluation

    Get PDF
    Wireless communication is already used in process automation for process monitoring. The next stage of implementation of wireless technology in industrial applications is for process control. The need for wireless networked control systems has evolved because of the necessity for extensibility, mobility, modularity, fast deployment, and reduced installation and maintenance cost. These benefits are only applicable given that the wireless network of choice can meet the strict requirements of process control applications, such as latency. In this regard, this paper is an effort towards identifying current industry practices related to implementing process control over a wireless link and evaluates the suitability of ISA100.11a network for use in process control through experiments

    Networked control system with MANET communication and AODV routing

    Get PDF
    The industries are presently exploring the use of wired and wireless systems for control, automation, and monitoring. The primary benefit of wireless technology is that it reduces the installation cost, in both money and labor terms, as companies already have a significant investment in wiring. The research article presents the work on the analysis of Mobile Ad Hoc Network (MANET) in a wireless real-time communication medium for a Networked Control System (NCS), and determining whether the simulated behavior is significant for a plant or not. The behavior of the MANET is analyzed for Ad-hoc on-demand distance vector routing (AODV) that maintenances communication among 150 nodes for NCS. The simulation is carried out in Network Simulator (NS2) software with different nodes cluster to estimate the network throughput, end-to-end delay, packet delivery ratio (PDR), and control overhead. The benefit of MANET is that it has a fixed topology, which permits flexibility since mobile devices may be used to construct ad-hoc networks anywhere, scalability because more nodes can be added to the network, and minimal operating expenses in that no original infrastructure needs to be developed. AODV routing is a flat routing system that does not require central routing nodes. As the network grows in size, the network can be scaled to meet the network design and configuration requirements. AODV is flexible to support different configurations and topological nodes in dynamic networks because of its versatility. The advantage of such network simulation and routing behavior provides the future direction for the researchers who are working towards the embedded hardware solutions for NCS, as the hardware complexity depends on the delay, throughput, and PDR
    corecore