1,298 research outputs found

    CSP channels for CAN-bus connected embedded control systems

    Get PDF
    Closed loop control system typically contains multitude of sensors and actuators operated simultaneously. So they are parallel and distributed in its essence. But when mapping this parallelism to software, lot of obstacles concerning multithreading communication and synchronization issues arise. To overcome this problem, the CT kernel/library based on CSP algebra has been developed. This project (TES.5410) is about developing communication extension to the CT library to make it applicable in distributed systems. Since the library is tailored for control systems, properties and requirements of control systems are taken into special consideration. Applicability of existing middleware solutions is examined. A comparison of applicable fieldbus protocols is done in order to determine most suitable ones and CAN fieldbus is chosen to be first fieldbus used. Brief overview of CSP and existing CSP based libraries is given. Middleware architecture is proposed along with few novel ideas

    Statistic Rate Monotonic Scheduling

    Full text link
    In this paper we present Statistical Rate Monotonic Scheduling (SRMS), a generalization of the classical RMS results of Liu and Layland that allows scheduling periodic tasks with highly variable execution times and statistical QoS requirements. Similar to RMS, SRMS has two components: a feasibility test and a scheduling algorithm. The feasibility test for SRMS ensures that using SRMS' scheduling algorithms, it is possible for a given periodic task set to share a given resource (e.g. a processor, communication medium, switching device, etc.) in such a way that such sharing does not result in the violation of any of the periodic tasks QoS constraints. The SRMS scheduling algorithm incorporates a number of unique features. First, it allows for fixed priority scheduling that keeps the tasks' value (or importance) independent of their periods. Second, it allows for job admission control, which allows the rejection of jobs that are not guaranteed to finish by their deadlines as soon as they are released, thus enabling the system to take necessary compensating actions. Also, admission control allows the preservation of resources since no time is spent on jobs that will miss their deadlines anyway. Third, SRMS integrates reservation-based and best-effort resource scheduling seamlessly. Reservation-based scheduling ensures the delivery of the minimal requested QoS; best-effort scheduling ensures that unused, reserved bandwidth is not wasted, but rather used to improve QoS further. Fourth, SRMS allows a system to deal gracefully with overload conditions by ensuring a fair deterioration in QoS across all tasks---as opposed to penalizing tasks with longer periods, for example. Finally, SRMS has the added advantage that its schedulability test is simple and its scheduling algorithm has a constant overhead in the sense that the complexity of the scheduler is not dependent on the number of the tasks in the system. We have evaluated SRMS against a number of alternative scheduling algorithms suggested in the literature (e.g. RMS and slack stealing), as well as refinements thereof, which we describe in this paper. Consistently throughout our experiments, SRMS provided the best performance. In addition, to evaluate the optimality of SRMS, we have compared it to an inefficient, yet optimal scheduler for task sets with harmonic periods.National Science Foundation (CCR-970668

    PERTS: A Prototyping Environment for Real-Time Systems

    Get PDF
    PERTS is a prototyping environment for real-time systems. It is being built incrementally and will contain basic building blocks of operating systems for time-critical applications, tools, and performance models for the analysis, evaluation and measurement of real-time systems and a simulation/emulation environment. It is designed to support the use and evaluation of new design approaches, experimentations with alternative system building blocks, and the analysis and performance profiling of prototype real-time systems

    Scheduling of Early Quantum Tasks

    Get PDF
    An Early Quantum Task (EQT) is a Quantum EDF task that has shrunk its first period into one quantum time slot. Its purpose is to be executed as soon as possible, without causing deadline overflow of other tasks. We will derive the conditions under which an EQT can be admitted and can have an immediate start. The advantage of scheduling EQTs is shown by its use in a buffered multi-media server. The EQT is associated with a multimedia stream and it will use its first invocation to fill the buffer, such that a client can start receiving data immediately

    Middleware Support for Aperiodic Tasks in Distributed Real-Time Systems

    Full text link
    Many mission-critical distributed real-time applications must handle aperiodic tasks with end-to-end deadlines. However, existing middleware (e.g., RT-CORBA) lacks schedulability analysis and run-time enforcement mecha-nisms needed to give online real-time guarantees for ape-riodic tasks. The primary contribution of this work is the design, implementation, and performance evaluation of the first realization of deferrable server and admission control mechanisms for aperiodic tasks in middleware. Empirical results on a KURT-Linux testbed demonstrate the efficiency and effectiveness of our deferrable server and admission control mechanisms in TAO’s federated event service.

    An Analytical Solution for Probabilistic Guarantees of Reservation Based Soft Real-Time Systems

    Full text link
    We show a methodology for the computation of the probability of deadline miss for a periodic real-time task scheduled by a resource reservation algorithm. We propose a modelling technique for the system that reduces the computation of such a probability to that of the steady state probability of an infinite state Discrete Time Markov Chain with a periodic structure. This structure is exploited to develop an efficient numeric solution where different accuracy/computation time trade-offs can be obtained by operating on the granularity of the model. More importantly we offer a closed form conservative bound for the probability of a deadline miss. Our experiments reveal that the bound remains reasonably close to the experimental probability in one real-time application of practical interest. When this bound is used for the optimisation of the overall Quality of Service for a set of tasks sharing the CPU, it produces a good sub-optimal solution in a small amount of time.Comment: IEEE Transactions on Parallel and Distributed Systems, Volume:27, Issue: 3, March 201

    Customizing Component Middleware for Distributed Real-Time Systems with Aperiodic and Periodic Tasks

    Get PDF
    Many distributed real-time applications must handle mixed aperiodic and periodic tasks with diverse requirements. However, existing middleware lacks flexible configuration mechanisms needed to manage end-to-end timing easily for a wide range of different applications with both aperiodic and periodic tasks. The primary contribution of this work is the design, implementation and performance evaluation of the first configurable component middleware services for admission control and load balancing of aperiodic and periodic tasks in distributed real-time systems. Empirical results demonstrate the need for, and the effectiveness of, our configurable component middleware approach in supporting different applications with aperiodic and periodic tasks
    corecore