1,914 research outputs found

    Towards an unified experimentation framework for protocol engineering

    Get PDF
    The design and development process of complex systems require an adequate methodology and efficient instrumental support in order to early detect and correct anomalies in the functional and non-functional properties of the solution. In this article, an Unified Experimentation Framework (UEF) providing experimentation facilities at both design and development stages is introduced. This UEF provides a mean to achieve experiment in both simulation mode with UML2 models of the designed protocol and emulation mode using real protocol implementation. A practical use case of the experimentation framework is illustrated in the context of satellite environment

    Transporting audio over wireless ad hoc networks: Experiments & new insights

    Get PDF
    Current efforts on ad hoc wireless network research are focused more on routing and multicasting protocols. However, there is an increasing need to understand what sort of media could be transported over wireless ad hoc networks other than data. Existing research on multimedia wireless communications often addresses broadband wireless networks with a connection-oriented backbone. In this paper, we address the possibility of transporting audio traffic over wireless ad hoc networks. We examine the impact of wireless multi-hop links on audio data relay and how the audio quality at the receiver is affected. In particular, we examine communication parameters such as latency, jitter, packet loss, and their impact on perceived audio quality. ©2003 IEEE.published_or_final_versio

    Smart PIN: performance and cost-oriented context-aware personal information network

    Get PDF
    The next generation of networks will involve interconnection of heterogeneous individual networks such as WPAN, WLAN, WMAN and Cellular network, adopting the IP as common infrastructural protocol and providing virtually always-connected network. Furthermore, there are many devices which enable easy acquisition and storage of information as pictures, movies, emails, etc. Therefore, the information overload and divergent content’s characteristics make it difficult for users to handle their data in manual way. Consequently, there is a need for personalised automatic services which would enable data exchange across heterogeneous network and devices. To support these personalised services, user centric approaches for data delivery across the heterogeneous network are also required. In this context, this thesis proposes Smart PIN - a novel performance and cost-oriented context-aware Personal Information Network. Smart PIN's architecture is detailed including its network, service and management components. Within the service component, two novel schemes for efficient delivery of context and content data are proposed: Multimedia Data Replication Scheme (MDRS) and Quality-oriented Algorithm for Multiple-source Multimedia Delivery (QAMMD). MDRS supports efficient data accessibility among distributed devices using data replication which is based on a utility function and a minimum data set. QAMMD employs a buffer underflow avoidance scheme for streaming, which achieves high multimedia quality without content adaptation to network conditions. Simulation models for MDRS and QAMMD were built which are based on various heterogeneous network scenarios. Additionally a multiple-source streaming based on QAMMS was implemented as a prototype and tested in an emulated network environment. Comparative tests show that MDRS and QAMMD perform significantly better than other approaches

    Recent advances in industrial wireless sensor networks towards efficient management in IoT

    Get PDF
    With the accelerated development of Internet-of- Things (IoT), wireless sensor networks (WSN) are gaining importance in the continued advancement of information and communication technologies, and have been connected and integrated with Internet in vast industrial applications. However, given the fact that most wireless sensor devices are resource constrained and operate on batteries, the communication overhead and power consumption are therefore important issues for wireless sensor networks design. In order to efficiently manage these wireless sensor devices in a unified manner, the industrial authorities should be able to provide a network infrastructure supporting various WSN applications and services that facilitate the management of sensor-equipped real-world entities. This paper presents an overview of industrial ecosystem, technical architecture, industrial device management standards and our latest research activity in developing a WSN management system. The key approach to enable efficient and reliable management of WSN within such an infrastructure is a cross layer design of lightweight and cloud-based RESTful web service

    Context transport based on 802.21 MIH protocol

    Get PDF
    Sensor networks, along with the sensorial output from their nodes, provide an information source to enhance and enrich upper layers mechanisms. The 802.21 MIH protocol provides a cross layer framework that can be extended for sensor information transport. At the same time, it creates an abstraction layer that removes hardware and software specificity from sensor nodes. On a higher level of the network stack, the XMPP protocol also provides an upper layer solution for content syndication on a platform with global access availability. We present a framework which integrates a cross-layer abstraction approach towards sensor devices of different families, while enabling the integration of media-independent sensor information into context consumers with the aim of optimizing network management, as well as application operation and usability. The work presented was also part of the first author’s MsC dissertation

    A Novel Framework for Software Defined Wireless Body Area Network

    Full text link
    Software Defined Networking (SDN) has gained huge popularity in replacing traditional network by offering flexible and dynamic network management. It has drawn significant attention of the researchers from both academia and industries. Particularly, incorporating SDN in Wireless Body Area Network (WBAN) applications indicates promising benefits in terms of dealing with challenges like traffic management, authentication, energy efficiency etc. while enhancing administrative control. This paper presents a novel framework for Software Defined WBAN (SDWBAN), which brings the concept of SDN technology into WBAN applications. By decoupling the control plane from data plane and having more programmatic control would assist to overcome the current lacking and challenges of WBAN. Therefore, we provide a conceptual framework for SDWBAN with packet flow model and a future direction of research pertaining to SDWBAN.Comment: Presented on 8th International Conference on Intelligent Systems, Modelling and Simulatio
    corecore