68 research outputs found

    Principles of Physical Layer Security in Multiuser Wireless Networks: A Survey

    Full text link
    This paper provides a comprehensive review of the domain of physical layer security in multiuser wireless networks. The essential premise of physical-layer security is to enable the exchange of confidential messages over a wireless medium in the presence of unauthorized eavesdroppers without relying on higher-layer encryption. This can be achieved primarily in two ways: without the need for a secret key by intelligently designing transmit coding strategies, or by exploiting the wireless communication medium to develop secret keys over public channels. The survey begins with an overview of the foundations dating back to the pioneering work of Shannon and Wyner on information-theoretic security. We then describe the evolution of secure transmission strategies from point-to-point channels to multiple-antenna systems, followed by generalizations to multiuser broadcast, multiple-access, interference, and relay networks. Secret-key generation and establishment protocols based on physical layer mechanisms are subsequently covered. Approaches for secrecy based on channel coding design are then examined, along with a description of inter-disciplinary approaches based on game theory and stochastic geometry. The associated problem of physical-layer message authentication is also introduced briefly. The survey concludes with observations on potential research directions in this area.Comment: 23 pages, 10 figures, 303 refs. arXiv admin note: text overlap with arXiv:1303.1609 by other authors. IEEE Communications Surveys and Tutorials, 201

    Interference-Aware Scheduling for Connectivity in MIMO Ad Hoc Multicast Networks

    Full text link
    We consider a multicast scenario involving an ad hoc network of co-channel MIMO nodes in which a source node attempts to share a streaming message with all nodes in the network via some pre-defined multi-hop routing tree. The message is assumed to be broken down into packets, and the transmission is conducted over multiple frames. Each frame is divided into time slots, and each link in the routing tree is assigned one time slot in which to transmit its current packet. We present an algorithm for determining the number of time slots and the scheduling of the links in these time slots in order to optimize the connectivity of the network, which we define to be the probability that all links can achieve the required throughput. In addition to time multiplexing, the MIMO nodes also employ beamforming to manage interference when links are simultaneously active, and the beamformers are designed with the maximum connectivity metric in mind. The effects of outdated channel state information (CSI) are taken into account in both the scheduling and the beamforming designs. We also derive bounds on the network connectivity and sum transmit power in order to illustrate the impact of interference on network performance. Our simulation results demonstrate that the choice of the number of time slots is critical in optimizing network performance, and illustrate the significant advantage provided by multiple antennas in improving network connectivity.Comment: 34 pages, 12 figures, accepted by IEEE Transactions on Vehicular Technology, Dec. 201

    D13.3 Overall assessment of selected techniques on energy- and bandwidth-efficient communications

    Get PDF
    Deliverable D13.3 del projecte europeu NEWCOM#The report presents the outcome of the Joint Research Activities (JRA) of WP1.3 in the last year of the Newcom# project. The activities focus on the investigation of bandwidth and energy efficient techniques for current and emerging wireless systems. The JRAs are categorized in three Tasks: (i) the first deals with techniques for power efficiency and minimization at the transceiver and network level; (ii) the second deals with the handling of interference by appropriate low interference transmission techniques; (iii) the third is concentrated on Radio Resource Management (RRM) and Interference Management (IM) in selected scenarios, including HetNets and multi-tier networks.Peer ReviewedPostprint (published version

    D13.2 Techniques and performance analysis on energy- and bandwidth-efficient communications and networking

    Get PDF
    Deliverable D13.2 del projecte europeu NEWCOM#The report presents the status of the research work of the various Joint Research Activities (JRA) in WP1.3 and the results that were developed up to the second year of the project. For each activity there is a description, an illustration of the adherence to and relevance with the identified fundamental open issues, a short presentation of the main results, and a roadmap for the future joint research. In the Annex, for each JRA, the main technical details on specific scientific activities are described in detail.Peer ReviewedPostprint (published version

    Secrecy Enhancement in Cooperative Relaying Systems

    Get PDF
    Cooperative communications is obviously an evolution in wireless networks due to its noticeable advantages such as increasing the coverage as well as combating fading and shadowing effects. However, the broadcast characteristic of a wireless medium which is exploited in cooperative communications leads to a variety of security vulnerabilities. As cooperative communication networks are globally expanded, they expose to security attacks and threats more than ever. Primarily, researchers have focused on upper layers of network architectures to meet the requirements for secure cooperative transmission while the upper-layer security solutions are incapable of combating a number of security threats, e.g., jamming attacks. To address this issue, physical-layer security has been recommended as a complementary solution in the literature. In this thesis, physical layer attacks of the cooperative communication systems are studied, and corresponding security techniques including cooperative jamming, beamforming and diversity approaches are investigated. In addition, a novel security solution for a two-hop decode-and-forward relaying system is presented where the transmitters insert a random phase shift to the modulated data of each hop. The random phase shift is created based on a shared secret among communicating entities. Thus, the injected phase shift confuses the eavesdropper and secrecy capacity improves. Furthermore, a cooperative jamming strategy for multi-hop decode-and-forward relaying systems is presented where multiple non-colluding illegitimate nodes can overhear the communication. The jamming signal is created by the transmitter of each hop while being sent with the primary signal. The jamming signal is known at the intended receiver as it is according to a secret common knowledge between the communicating entities. Hence, artificial noise misleads the eavesdroppers, and decreases their signal-to-noise-ratio. As a result, secrecy capacity of the system is improved. Finally, power allocation among friendly jamming and main signal is proposed to ensure that suggested scheme enhances secrecy
    corecore