61 research outputs found

    Performance Analysis of Two-Hop Cooperative MIMO transmission with Relay Selection in Rayleigh Fading Channel

    Full text link
    Wireless relaying is one of the promising solutions to overcome the channel impairments and provide high data rate coverage that appears for beyond 3G mobile communications. In this paper we present an end to end BER performance analysis of dual hop wireless communication systems equipped with multiple decode and forward relays over the Rayleigh fading channel with relay selection. We select the best relay based on end to end channel conditions. We apply orthogonal space time block coding (OSTBC) at source, and also present how the multiple antennas at the source terminal affects the end to end BER performance. This intermediate relay technique will cover long distance where destination is out of reach from source.Comment: 5 figures, 4th International Conference on Wireless Communications, Networking and Mobile Computing, 2008. WiCOM '0

    Performance Evaluation and Improvement of Wireless Amplify-and-Forward Cooperative-Based Systems under Nodes Mobility and Imperfect CSI Estimation Impacts

    Get PDF
    Cooperative communication techniques have been introduced in wireless networks to achieve spacial diversity-gain via the readiness of multiple users (via relays) to assist a source forwarding its data to a final destination. Cooperative communication techniques have shown their capability in improving system reliability and extending coverage area, and hence, it is believable that they will act as a promising technology for the coming fifth-generation (5G). Nevertheless, most existing work reported in literature on performance studies of wireless cooperative-based systems are based on the assumptions that the multipath fading channels among systems cooperating nodes are quasi-static (i.e., fading channels coefficients are constant over a number of consecutive signaling periods) and channel-state-information (CSI) estimation processes at systems receivers are perfect. Nowadays, however, there is an increased number of users riding high-speed public transportation vehicles and demanding wireless data services through their own terminals. As a result of such high mobility wireless terminals, the assumption of time-selective (i.e., non quasi-static) fading is more realistic. This time-selective fading environment would severely deteriorate the performance of existing wireless cooperative systems that have been already designed based on the assumption of quasi-static fading (low users speeds). Further, due to impairments associated with practical receiver tracking-loops implementation issues, it is more general to assume that CSI estimations at systems receiving sides are imperfect. The scope of this dissertation is to provide comprehensive performance evaluation study for several emerging models of wireless amplify-and-forward (AF) cooperative-based communication systems that operate under the effects of the more general scenarios of high nodes mobility (time-selective fading) and imperfect channel estimations. This performance evaluation study is conducted by deriving closed-form expressions for different performance metrics; including error probability, outage probability and channel capacity. Monte Carlo simulations are also provided to complement and validate the analytical analyses. All of the obtained results in this dissertation are novel and general for mobile as well as non-moving nodes and for imperfect as well as perfect CSI estimations. Moreover, in this dissertation we develop innovative and applicable solutions and receiver designs that are capable of mitigating the detrimental impacts of the high nodes mobility on the performance of the cooperative system models under study

    Cognitive Multihop Wireless Sensor Networks over Nakagami-m Fading Channels

    Get PDF
    This work is supported by the National Science Foundation of China (NSFC) under Grant 61372114, by the National 973 Program of China under Grant 2012CB316005, by the Joint Funds of NSFC-Guangdong under Grant U1035001, and by Beijing Higher Education Young Elite Teacher Project (no. YETP0434)

    Performance Analysis of Project-and-Forward Relaying in Mixed MIMO-Pinhole and Rayleigh Dual-Hop Channel

    Full text link
    In this letter, we present an end-to-end performance analysis of dual-hop project-and-forward relaying in a realistic scenario, where the source-relay and the relay-destination links are experiencing MIMO-pinhole and Rayleigh channel conditions, respectively. We derive the probability density function of both the relay post-processing and the end-to-end signal-to-noise ratios, and the obtained expressions are used to derive the outage probability of the analyzed system as well as its end-to-end ergodic capacity in terms of generalized functions. Applying then the residue theory to Mellin-Barnes integrals, we infer the system asymptotic behavior for different channel parameters. As the bivariate Meijer-G function is involved in the analysis, we propose a new and fast MATLAB implementation enabling an automated definition of the complex integration contour. Extensive Monte-Carlo simulations are invoked to corroborate the analytical results.Comment: 4 pages, IEEE Communications Letters, 201

    Detect-and-forward relaying aided cooperative spatial modulation for wireless networks

    No full text
    A novel detect-and-forward (DeF) relaying aided cooperative SM scheme is proposed, which is capable of striking a flexible tradeoff in terms of the achievable bit error ratio (BER), complexity and unequal error protection (UEP). More specifically, SM is invoked at the source node (SN) and the information bit stream is divided into two different sets: the antenna index-bits (AI-bits) as well as the amplitude and phase modulation-bits (APM-bits). By exploiting the different importance of the AI-bits and the APM-bits in SM detection, we propose three low-complexity, yet powerful relay protocols, namely the partial, the hybrid and the hierarchical modulation (HM) based DeF relaying schemes. These schemes determine the most appropriate number of bits to be re-modulated by carefully considering their potential benefits and then assigning a specific modulation scheme for relaying the message. As a further benefit, the employment of multiple radio frequency (RF) chains and the requirement of tight inter-relay synchronization (IRS) can be avoided. Moreover, by exploiting the benefits of our low-complexity relaying protocols and our inter-element interference (IEI) model, a low-complexity maximum-likelihood (ML) detector is proposed for jointly detecting the signal received both via the source-destination (SD) and relay-destination (RD) links. Additionally, an upper bound of the BER is derived for our DeF-SM scheme. Our numerical results show that the bound is asymptotically tight in the high-SNR region and the proposed schemes provide beneficial system performance improvements compared to the conventional MIMO schemes in an identical cooperative scenario.<br/

    Distributed space-time block coding in cooperative relay networks with application in cognitive radio

    Get PDF
    Spatial diversity is an effective technique to combat the effects of severe fading in wireless environments. Recently, cooperative communications has emerged as an attractive communications paradigm that can introduce a new form of spatial diversity which is known as cooperative diversity, that can enhance system reliability without sacrificing the scarce bandwidth resource or consuming more transmit power. It enables single-antenna terminals in a wireless relay network to share their antennas to form a virtual antenna array on the basis of their distributed locations. As such, the same diversity gains as in multi-input multi-output systems can be achieved without requiring multiple-antenna terminals. In this thesis, a new approach to cooperative communications via distributed extended orthogonal space-time block coding (D-EO-STBC) based on limited partial feedback is proposed for cooperative relay networks with three and four relay nodes and then generalized for an arbitrary number of relay nodes. This scheme can achieve full cooperative diversity and full transmission rate in addition to array gain, and it has certain properties that make it alluring for practical systems such as orthogonality, flexibility, low computational complexity and decoding delay, and high robustness to node failure. Versions of the closed-loop D-EO-STBC scheme based on cooperative orthogonal frequency division multiplexing type transmission are also proposed for both flat and frequency-selective fading channels which can overcome imperfect synchronization in the network. As such, this proposed technique can effectively cope with the effects of fading and timing errors. Moreover, to increase the end-to-end data rate, this scheme is extended for two-way relay networks through a three-time slot framework. On the other hand, to substantially reduce the feedback channel overhead, limited feedback approaches based on parameter quantization are proposed. In particular, an optimal one-bit partial feedback approach is proposed for the generalized D-O-STBC scheme to maximize the array gain. To further enhance the end-to-end bit error rate performance of the cooperative relay system, a relay selection scheme based on D-EO-STBC is then proposed. Finally, to highlight the utility of the proposed D-EO-STBC scheme, an application to cognitive radio is studied

    Otimização do fronthaul ótico para redes de acesso de rádio (baseadas) em computação em nuvem (CC-RANs)

    Get PDF
    Doutoramento conjunto (MAP-Tele) em Engenharia Eletrotécnica/TelecomunicaçõesA proliferação de diversos tipos de dispositivos moveis, aplicações e serviços com grande necessidade de largura de banda têm contribuído para o aumento de ligações de banda larga e ao aumento do volume de trafego das redes de telecomunicações moveis. Este aumento exponencial tem posto uma enorme pressão nos mobile operadores de redes móveis (MNOs). Um dos aspetos principais deste recente desenvolvimento, é a necessidade que as redes têm de oferecer baixa complexidade nas ligações, como também baixo consumo energético, muito baixa latência e ao mesmo tempo uma grande capacidade por baixo usto. De maneira a resolver estas questões, os MNOs têm focado a sua atenção na redes de acesso por rádio em nuvem (C-RAN) principalmente devido aos seus benefícios em termos de otimização de performance e relação qualidade preço. O standard para a distribuição de sinais sem fios por um fronthaul C-RAN é o common public radio interface (CPRI). No entanto, ligações óticas baseadas em interfaces CPRI necessitam de uma grande largura de banda. Estes requerimentos podem também ser atingidos com uma implementação em ligação free space optical (FSO) que é um sistema ótico que usa comunicação sem fios. O FSO tem sido uma alternativa muito apelativa aos sistemas de comunicação rádio (RF) pois combinam a flexibilidade e mobilidade das redes RF ao mesmo tempo que permitem a elevada largura de banda permitida pelo sistema ótico. No entanto, as ligações FSO são suscetíveis a alterações atmosféricas que podem prejudicar o desempenho do sistema de comunicação. Estas limitações têm evitado o FSO de ser tornar uma excelente solução para o fronthaul. Uma caracterização precisa do canal e tecnologias mais avançadas são então necessárias para uma implementação pratica de ligações FSO. Nesta tese, vamos estudar uma implementação eficiente para fronthaul baseada em tecnologia á rádio-sobre-FSO (RoFSO). Propomos expressões em forma fechada para mitigação das perdas de propagação e para a estimação da capacidade do canal de maneira a aliviar a complexidade do sistema de comunicação. Simulações numéricas são também apresentadas para formatos de modulação adaptativas. São também considerados esquemas como um sistema hibrido RF/FSO e tecnologias de transmissão apoiadas por retransmissores que ajudam a alivar os requerimentos impostos por um backhaul/fronthaul de C-RAN. Os modelos propostos não só reduzem o esforço computacional, como também têm outros méritos, tais como, uma elevada precisão na estimação do canal e desempenho, baixo requisitos na capacidade de memória e uma rápida e estável operação comparativamente com o estado da arte em sistemas analíticos (PON)-FSO. Este sistema é implementado num recetor em tempo real que é emulado através de uma field-programmable gate array (FPGA) comercial. Permitindo assim um sistema aberto, interoperabilidade, portabilidade e também obedecer a standards de software aberto. Os esquemas híbridos têm a habilidade de suportar diferentes aplicações, serviços e múltiplos operadores a partilharem a mesma infraestrutura de fibra ótica.The proliferation of different mobile devices, bandwidth-intensive applications and services contribute to the increase in the broadband connections and the volume of traffic on the mobile networks. This exponential growth has put considerable pressure on the mobile network operators (MNOs). In principal, there is a need for networks that not only offer low-complexity, low-energy consumption, and extremely low-latency but also high-capacity at relatively low cost. In order to address the demand, MNOs have given significant attention to the cloud radio access network (C-RAN) due to its beneficial features in terms of performance optimization and cost-effectiveness. The de facto standard for distributing wireless signal over the C-RAN fronthaul is the common public radio interface (CPRI). However, optical links based on CPRI interfaces requires large bandwidth. Also, the aforementioned requirements can be realized with the implementation of free space optical (FSO) link, which is an optical wireless system. The FSO is an appealing alternative to the radio frequency (RF) communication system that combines the flexibility and mobility offered by the RF networks with the high-data rates provided by the optical systems. However, the FSO links are susceptible to atmospheric impairments which eventually hinder the system performance. Consequently, these limitations prevent FSO from being an efficient standalone fronthaul solution. So, precise channel characterizations and advanced technologies are required for practical FSO link deployment and operation. In this thesis, we study an efficient fronthaul implementation that is based on radio-on-FSO (RoFSO) technologies. We propose closedform expressions for fading-mitigation and for the estimation of channel capacity so as to alleviate the system complexity. Numerical simulations are presented for adaptive modulation scheme using advanced modulation formats. We also consider schemes like hybrid RF/FSO and relay-assisted transmission technologies that can help in alleviating the stringent requirements by the C-RAN backhaul/fronthaul. The propose models not only reduce the computational requirements/efforts, but also have a number of diverse merits such as high-accuracy, low-memory requirements, fast and stable operation compared to the current state-of-the-art analytical based approaches. In addition to the FSO channel characterization, we present a proof-of-concept experiment in which we study the transmission capabilities of a hybrid passive optical network (PON)-FSO system. This is implemented with the real-time receiver that is emulated by a commercial field-programmable gate array (FPGA). This helps in facilitating an open system and hence enables interoperability, portability, and open software standards. The hybrid schemes have the ability to support different applications, services, and multiple operators over a shared optical fiber infrastructure
    corecore