454 research outputs found

    Application Adaptive Bandwidth Management Using Real-Time Network Monitoring.

    Get PDF
    Application adaptive bandwidth management is a strategy for ensuring secure and reliable network operation in the presence of undesirable applications competing for a network’s crucial bandwidth, covert channels of communication via non-standard traffic on well-known ports, and coordinated Denial of Service attacks. The study undertaken here explored the classification, analysis and management of the network traffic on the basis of ports and protocols used, type of applications, traffic direction and flow rates on the East Tennessee State University’s campus-wide network. Bandwidth measurements over a nine-month period indicated bandwidth abuse of less than 0.0001% of total network bandwidth. The conclusion suggests the use of the defense-in-depth approach in conjunction with the KHYATI (Knowledge, Host hardening, Yauld monitoring, Analysis, Tools and Implementation) paradigm to ensure effective information assurance

    IPv6: a new security challenge

    Get PDF
    Tese de mestrado em Segurança Informática, apresentada à Universidade de Lisboa, através da Faculdade de Ciências, 2011O Protocolo de Internet versão 6 (IPv6) foi desenvolvido com o intuito de resolver alguns dos problemas não endereçados pelo seu antecessor, o Protocolo de Internet versão 4 (IPv4), nomeadamente questões relacionadas com segurança e com o espaço de endereçamento disponível. São muitos os que na última década têm desenvolvido estudos sobre os investimentos necessários à sua adoção e sobre qual o momento certo para que o mesmo seja adotado por todos os players no mercado. Recentemente, o problema da extinção de endereçamentos públicos a ser disponibilizado pelas diversas Region Internet registry – RIRs - despertou o conjunto de entidades envolvidas para que se agilizasse o processo de migração do IPv4 para o IPv6. Ao contrário do IPv4, esta nova versão considera a segurança como um objetivo fundamental na sua implementação, nesse sentido é recomendado o uso do protocolo IPsec ao nível da camada de rede. No entanto, e devido à imaturidade do protocolo e à complexidade que este período de transição comporta, existem inúmeras implicações de segurança que devem ser consideradas neste período de migração. O objetivo principal deste trabalho é definir um conjunto de boas práticas no âmbito da segurança na implementação do IPv6 que possa ser utilizado pelos administradores de redes de dados e pelas equipas de segurança dos diversos players no mercado. Nesta fase de transição, é de todo útil e conveniente contribuir de forma eficiente na interpretação dos pontos fortes deste novo protocolo assim como nas vulnerabilidades a ele associadas.IPv6 was developed to address the exhaustion of IPv4 addresses, but has not yet seen global deployment. Recent trends are now finally changing this picture and IPv6 is expected to take off soon. Contrary to the original, this new version of the Internet Protocol has security as a design goal, for example with its mandatory support for network layer security. However, due to the immaturity of the protocol and the complexity of the transition period, there are several security implications that have to be considered when deploying IPv6. In this project, our goal is to define a set of best practices for IPv6 Security that could be used by IT staff and network administrators within an Internet Service Provider. To this end, an assessment of some of the available security techniques for IPv6 will be made by means of a set of laboratory experiments using real equipment from an Internet Service Provider in Portugal. As the transition for IPv6 seems inevitable this work can help ISPs in understanding the threats that exist in IPv6 networks and some of the prophylactic measures available, by offering recommendations to protect internal as well as customers’ networks

    Multifaceted Faculty Network Design and Management: Practice and Experience Report

    Get PDF
    We report on our experience on multidimensional aspects of our faculty's network design and management, including some unique aspects such as campus-wide VLANs and ghosting, security and monitoring, switching and routing, and others. We outline a historical perspective on certain research, design, and development decisions and discuss the network topology, its scalability, and management in detail; the services our network provides, and its evolution. We overview the security aspects of the management as well as data management and automation and the use of the data by other members of the IT group in the faculty.Comment: 19 pages, 11 figures, TOC and index; a short version presented at C3S2E'11; v6: more proofreading, index, TOC, reference

    Comparative Analysis of Active and Passive Mapping Techniques in an Internet-Based Local Area Network

    Get PDF
    Network mapping technologies allow quick and easy discovery of computer systems throughout a network. Active mapping methods, such as using nmap, capitalize on the standard stimulus-response of network systems to probe target systems. In doing so, they create extra traffic on the network, both for the initial probe and for the target system\u27s response. Passive mapping methods work opportunistically, listening for network traffic as it transits the system. As such, passive methods generate minimal network traffic overhead. Active methods are still standard methods for network information gathering; passive techniques are not normally used due to the possibility of missing important information as it passes by the sensor. Configuring the network for passive network mapping also involves more network management. This research explores the implementation of a prototype passive network mapping system, lanmap, designed for use within an Internet Protocol-based local area network. Network traffic is generated by a synthetic traffic generation suite using honeyd and syntraf, a custom Java program to interact with honeyd. lanmap is tested against nmap to compare the two techniques. Experimental results show that lanmap is quite effective, discovering an average of 76.1% of all configured services (server- and client-side) whereas nmap only found 27.6% of all configured services. Conversely, lanmap discovered 19.9% of the server services while nmap discovered 92.7% of the configured server-side services. lanmap discovered 100% of all client-side service consumers while nmap found none. lanmap generated an average of 200 packets of network overhead while nmap generated a minimum of minimum 8,600 packets on average?up to 155,000 packets at its maximum average value. The results show that given the constraints of the test bed, passive network mapping is a viable alternative to action network mapping, unless the mapper is looking for server-side services
    • …
    corecore