50,958 research outputs found

    Using Transcoding for Hidden Communication in IP Telephony

    Get PDF
    The paper presents a new steganographic method for IP telephony called TranSteg (Transcoding Steganography). Typically, in steganographic communication it is advised for covert data to be compressed in order to limit its size. In TranSteg it is the overt data that is compressed to make space for the steganogram. The main innovation of TranSteg is to, for a chosen voice stream, find a codec that will result in a similar voice quality but smaller voice payload size than the originally selected. Then, the voice stream is transcoded. At this step the original voice payload size is intentionally unaltered and the change of the codec is not indicated. Instead, after placing the transcoded voice payload, the remaining free space is filled with hidden data. TranSteg proof of concept implementation was designed and developed. The obtained experimental results are enclosed in this paper. They prove that the proposed method is feasible and offers a high steganographic bandwidth. TranSteg detection is difficult to perform when performing inspection in a single network localisation.Comment: 17 pages, 16 figures, 4 table

    Development of a simple information pump.

    Get PDF
    The Information Pump (IP) is a methodology that aims to counter the problems arising from traditional subjective product data collection. The IP is a game theory based process that aims to maximise information extracted from a panel of subjects, while maintaining their interest in the process through a continuous panelist scoring method. The challenge with implementing this arises from the difficulty in executing the 'game'. In its original format, there is an assumption that the game is played with each player using their own PC to interact with the process. While this in theory allows information and scores to flow in a controlled manner between the players, it actually provides a major barrier to the wider adoption of the IP method. This barrier is two-fold: it is costly and complex, and it is not a natural manner for exchanging information. The core objective is to develop a low cost version of the IP method. This will use the game theory approach to maintain interest among participants and maximise information extraction, but remove the need for each participant to have their own PC interface to the game. This will require replacing both the inter-player communication method and the score keeping/reporting

    A Multi-view Context-aware Approach to Android Malware Detection and Malicious Code Localization

    Full text link
    Existing Android malware detection approaches use a variety of features such as security sensitive APIs, system calls, control-flow structures and information flows in conjunction with Machine Learning classifiers to achieve accurate detection. Each of these feature sets provides a unique semantic perspective (or view) of apps' behaviours with inherent strengths and limitations. Meaning, some views are more amenable to detect certain attacks but may not be suitable to characterise several other attacks. Most of the existing malware detection approaches use only one (or a selected few) of the aforementioned feature sets which prevent them from detecting a vast majority of attacks. Addressing this limitation, we propose MKLDroid, a unified framework that systematically integrates multiple views of apps for performing comprehensive malware detection and malicious code localisation. The rationale is that, while a malware app can disguise itself in some views, disguising in every view while maintaining malicious intent will be much harder. MKLDroid uses a graph kernel to capture structural and contextual information from apps' dependency graphs and identify malice code patterns in each view. Subsequently, it employs Multiple Kernel Learning (MKL) to find a weighted combination of the views which yields the best detection accuracy. Besides multi-view learning, MKLDroid's unique and salient trait is its ability to locate fine-grained malice code portions in dependency graphs (e.g., methods/classes). Through our large-scale experiments on several datasets (incl. wild apps), we demonstrate that MKLDroid outperforms three state-of-the-art techniques consistently, in terms of accuracy while maintaining comparable efficiency. In our malicious code localisation experiments on a dataset of repackaged malware, MKLDroid was able to identify all the malice classes with 94% average recall

    A Data-driven Model for Interaction-aware Pedestrian Motion Prediction in Object Cluttered Environments

    Full text link
    This paper reports on a data-driven, interaction-aware motion prediction approach for pedestrians in environments cluttered with static obstacles. When navigating in such workspaces shared with humans, robots need accurate motion predictions of the surrounding pedestrians. Human navigation behavior is mostly influenced by their surrounding pedestrians and by the static obstacles in their vicinity. In this paper we introduce a new model based on Long-Short Term Memory (LSTM) neural networks, which is able to learn human motion behavior from demonstrated data. To the best of our knowledge, this is the first approach using LSTMs, that incorporates both static obstacles and surrounding pedestrians for trajectory forecasting. As part of the model, we introduce a new way of encoding surrounding pedestrians based on a 1d-grid in polar angle space. We evaluate the benefit of interaction-aware motion prediction and the added value of incorporating static obstacles on both simulation and real-world datasets by comparing with state-of-the-art approaches. The results show, that our new approach outperforms the other approaches while being very computationally efficient and that taking into account static obstacles for motion predictions significantly improves the prediction accuracy, especially in cluttered environments.Comment: 8 pages, accepted for publication at the IEEE International Conference on Robotics and Automation (ICRA) 201

    A Data-driven Model for Interaction-aware Pedestrian Motion Prediction in Object Cluttered Environments

    Full text link
    This paper reports on a data-driven, interaction-aware motion prediction approach for pedestrians in environments cluttered with static obstacles. When navigating in such workspaces shared with humans, robots need accurate motion predictions of the surrounding pedestrians. Human navigation behavior is mostly influenced by their surrounding pedestrians and by the static obstacles in their vicinity. In this paper we introduce a new model based on Long-Short Term Memory (LSTM) neural networks, which is able to learn human motion behavior from demonstrated data. To the best of our knowledge, this is the first approach using LSTMs, that incorporates both static obstacles and surrounding pedestrians for trajectory forecasting. As part of the model, we introduce a new way of encoding surrounding pedestrians based on a 1d-grid in polar angle space. We evaluate the benefit of interaction-aware motion prediction and the added value of incorporating static obstacles on both simulation and real-world datasets by comparing with state-of-the-art approaches. The results show, that our new approach outperforms the other approaches while being very computationally efficient and that taking into account static obstacles for motion predictions significantly improves the prediction accuracy, especially in cluttered environments.Comment: 8 pages, accepted for publication at the IEEE International Conference on Robotics and Automation (ICRA) 201

    Method for growth of crystals by pressure reduction of supercritical or subcritical solution

    Get PDF
    Crystals of high morphological quality are grown by dissolution of a substance to be grown into the crystal in a suitable solvent under high pressure, and by subsequent slow, time-controlled reduction of the pressure of the resulting solution. During the reduction of the pressure interchange of heat between the solution and the environment is minimized by performing the pressure reduction either under isothermal or adiabatic conditions
    • …
    corecore