26 research outputs found

    Quantitative Performance Comparison of Various Traffic Shapers in Time-Sensitive Networking

    Full text link
    Owning to the sub-standards being developed by IEEE Time-Sensitive Networking (TSN) Task Group, the traditional IEEE 802.1 Ethernet is enhanced to support real-time dependable communications for future time- and safety-critical applications. Several sub-standards have been recently proposed that introduce various traffic shapers (e.g., Time-Aware Shaper (TAS), Asynchronous Traffic Shaper (ATS), Credit-Based Shaper (CBS), Strict Priority (SP)) for flow control mechanisms of queuing and scheduling, targeting different application requirements. These shapers can be used in isolation or in combination and there is limited work that analyzes, evaluates and compares their performance, which makes it challenging for end-users to choose the right combination for their applications. This paper aims at (i) quantitatively comparing various traffic shapers and their combinations, (ii) summarizing, classifying and extending the architectures of individual and combined traffic shapers and their Network calculus (NC)-based performance analysis methods and (iii) filling the gap in the timing analysis research on handling two novel hybrid architectures of combined traffic shapers, i.e., TAS+ATS+SP and TAS+ATS+CBS. A large number of experiments, using both synthetic and realistic test cases, are carried out for quantitative performance comparisons of various individual and combined traffic shapers, from the perspective of upper bounds of delay, backlog and jitter. To the best of our knowledge, we are the first to quantitatively compare the performance of the main traffic shapers in TSN. The paper aims at supporting the researchers and practitioners in the selection of suitable TSN sub-protocols for their use cases

    On Time Synchronization Issues in Time-Sensitive Networks with Regulators and Nonideal Clocks

    Full text link
    Flow reshaping is used in time-sensitive networks (as in the context of IEEE TSN and IETF Detnet) in order to reduce burstiness inside the network and to support the computation of guaranteed latency bounds. This is performed using per-flow regulators (such as the Token Bucket Filter) or interleaved regulators (as with IEEE TSN Asynchronous Traffic Shaping). Both types of regulators are beneficial as they cancel the increase of burstiness due to multiplexing inside the network. It was demonstrated, by using network calculus, that they do not increase the worst-case latency. However, the properties of regulators were established assuming that time is perfect in all network nodes. In reality, nodes use local, imperfect clocks. Time-sensitive networks exist in two flavours: (1) in non-synchronized networks, local clocks run independently at every node and their deviations are not controlled and (2) in synchronized networks, the deviations of local clocks are kept within very small bounds using for example a synchronization protocol (such as PTP) or a satellite based geo-positioning system (such as GPS). We revisit the properties of regulators in both cases. In non-synchronized networks, we show that ignoring the timing inaccuracies can lead to network instability due to unbounded delay in per-flow or interleaved regulators. We propose and analyze two methods (rate and burst cascade, and asynchronous dual arrival-curve method) for avoiding this problem. In synchronized networks, we show that there is no instability with per-flow regulators but, surprisingly, interleaved regulators can lead to instability. To establish these results, we develop a new framework that captures industrial requirements on clocks in both non-synchronized and synchronized networks, and we develop a toolbox that extends network calculus to account for clock imperfections.Comment: ACM SIGMETRICS 2020 Boston, Massachusetts, USA June 8-12, 202

    Improved Delay Bound for a Service Curve Element with Known Transmission Rate

    Full text link
    Network calculus is often used to prove delay bounds in deterministic networks, using arrival and service curves. We consider a FIFO system that offers a rate-latency service curve and where packet transmission occurs at line rate without pre-emption. The existing network calculus delay bounds take advantage of the service curve guarantee but not of the fact that transmission occurs at full line rate. In this letter, we provide a novel, improved delay bound which takes advantage of these two features. Contrary to existing bounds, ours is per-packet and depends on the packet length. We prove that it is tight.Comment: 4 pages, 2 figure

    Latency Analysis of Multiple Classes of AVB Traffic in TSN with Standard Credit Behavior using Network Calculus

    Full text link
    Time-Sensitive Networking (TSN) is a set of amendments that extend Ethernet to support distributed safety-critical and real-time applications in the industrial automation, aerospace and automotive areas. TSN integrates multiple traffic types and supports interactions in several combinations. In this paper we consider the configuration supporting Scheduled Traffic (ST) traffic scheduled based on Gate-Control-Lists (GCLs), Audio-Video-Bridging (AVB) traffic according to IEEE 802.1BA that has bounded latencies, and Best-Effort (BE) traffic, for which no guarantees are provided. The paper extends the timing analysis method to multiple AVB classes and proofs the credit bounds for multiple classes of AVB traffic, respectively under frozen and non-frozen behaviors of credit during guard band (GB). They are prerequisites for non-overflow credits of Credit-Based Shaper (CBS) and preventing starvation of AVB traffic. Moreover, this paper proposes an improved timing analysis method reducing the pessimism for the worst-case end-to-end delays of AVB traffic by considering the limitations from the physical link rate and the output of CBS. Finally, we evaluate the improved analysis method on both synthetic and real-world test cases, showing the significant reduction of pessimism on latency bounds compared to related work, and presenting the correctness validation compared with simulation results. We also compare the AVB latency bounds in the case of frozen and non-frozen credit during GB. Additionally, we evaluate the scalability of our method with variation of the load of ST flows and of the bandwidth reservation for AVB traffic

    Asynchronous Time-Sensitive Networking for Industrial Networks

    Get PDF
    Time-Sensitive Networking (TSN) is expected to be a cornerstone in tomorrow’s industrial networks. That is because of its ability to provide deterministic quality-of-service in terms of delay, jitter, and scalability. Moreover, it enables more scalable, more affordable, and easier to manage and operate networks compared to current industrial networks, which are based on Industrial Ethernet. In this article, we evaluate the maximum capacity of the asynchronous TSN networks to accommodate industrial traffic flows. To that end, we formally formulate the flow allocation problem in the mentioned networks as a convex mixed-integer non-linear program. To the best of the authors’ knowledge, neither the maximum utilization of the asynchronous TSN networks nor the formulation of the flow allocation problem in those networks have been previously addressed in the literature. The results show that the network topology and the traffic matrix highly impact on the link utilization.This work has been partially funded by the H2020 research and innovation project 5G-CLARITY (Grant No. 871428), national research project TRUE5G: PID2019-108713RB-C5
    corecore