1,805 research outputs found

    Lightweight IoT security middleware for end-to-end cloud-fog communication

    Get PDF
    Dr. Prasad Calyam, Thesis Supervisor.Field of study: Computer science."May 2017."IoT (Internet of Things) based smart devices such as sensors and wearables have been actively used in edge clouds i.e., 'fogs' to provide critical data during scenarios ranging from e.g., disaster response to in-home healthcare. Since these devices typically operate in resource constrained environments at the network-edge, end-to-end security protocols have to be lightweight while also being robust, flexible and energy-efficient for data import/ export to/from cloud platforms. In this thesis, we present the design and implementation of a lightweight IoT security middleware for end-to-end cloud-fog communications involving smart devices and cloud-hosted applications. The novelty of our middleware is in its ability to cope with intermittent network connectivity as well as device constraints in terms of computational power, memory and network bandwidth. To provide security during intermittent network conditions, we use a Session Resumption concept in order to reuse encrypted sessions from recent past, if a recently disconnected device wants to resume a prior connection that was interrupted. The primary design goal is to not only secure IoT device communications, but also to maintain security compatibility with an existing core cloud infrastructure. Experiment results show how our middleware implementation provides fast and resource-aware security by leveraging static pre-shared keys (PSKs) for a variety of IoT-based application requirements. Thus, our work lays a foundation for promoting increased adoption of static properties such as Static PSKs that can be highly suitable for handling the trade-offs in high security or faster data transfer requirements within IoT-based applications.Includes bibliographical references (pages 58-60)

    Middleware Technologies for Cloud of Things - a survey

    Get PDF
    The next wave of communication and applications rely on the new services provided by Internet of Things which is becoming an important aspect in human and machines future. The IoT services are a key solution for providing smart environments in homes, buildings and cities. In the era of a massive number of connected things and objects with a high grow rate, several challenges have been raised such as management, aggregation and storage for big produced data. In order to tackle some of these issues, cloud computing emerged to IoT as Cloud of Things (CoT) which provides virtually unlimited cloud services to enhance the large scale IoT platforms. There are several factors to be considered in design and implementation of a CoT platform. One of the most important and challenging problems is the heterogeneity of different objects. This problem can be addressed by deploying suitable "Middleware". Middleware sits between things and applications that make a reliable platform for communication among things with different interfaces, operating systems, and architectures. The main aim of this paper is to study the middleware technologies for CoT. Toward this end, we first present the main features and characteristics of middlewares. Next we study different architecture styles and service domains. Then we presents several middlewares that are suitable for CoT based platforms and lastly a list of current challenges and issues in design of CoT based middlewares is discussed.Comment: http://www.sciencedirect.com/science/article/pii/S2352864817301268, Digital Communications and Networks, Elsevier (2017

    Middleware Technologies for Cloud of Things - a survey

    Full text link
    The next wave of communication and applications rely on the new services provided by Internet of Things which is becoming an important aspect in human and machines future. The IoT services are a key solution for providing smart environments in homes, buildings and cities. In the era of a massive number of connected things and objects with a high grow rate, several challenges have been raised such as management, aggregation and storage for big produced data. In order to tackle some of these issues, cloud computing emerged to IoT as Cloud of Things (CoT) which provides virtually unlimited cloud services to enhance the large scale IoT platforms. There are several factors to be considered in design and implementation of a CoT platform. One of the most important and challenging problems is the heterogeneity of different objects. This problem can be addressed by deploying suitable "Middleware". Middleware sits between things and applications that make a reliable platform for communication among things with different interfaces, operating systems, and architectures. The main aim of this paper is to study the middleware technologies for CoT. Toward this end, we first present the main features and characteristics of middlewares. Next we study different architecture styles and service domains. Then we presents several middlewares that are suitable for CoT based platforms and lastly a list of current challenges and issues in design of CoT based middlewares is discussed.Comment: http://www.sciencedirect.com/science/article/pii/S2352864817301268, Digital Communications and Networks, Elsevier (2017

    A survey of communication protocols for internet of things and related challenges of fog and cloud computing integration

    Get PDF
    The fast increment in the number of IoT (Internet of Things) devices is accelerating the research on new solutions to make cloud services scalable. In this context, the novel concept of fog computing as well as the combined fog-to-cloud computing paradigm is becoming essential to decentralize the cloud, while bringing the services closer to the end-system. This article surveys e application layer communication protocols to fulfill the IoT communication requirements, and their potential for implementation in fog- and cloud-based IoT systems. To this end, the article first briefly presents potential protocol candidates, including request-reply and publish-subscribe protocols. After that, the article surveys these protocols based on their main characteristics, as well as the main performance issues, including latency, energy consumption, and network throughput. These findings are thereafter used to place the protocols in each segment of the system (IoT, fog, cloud), and thus opens up the discussion on their choice, interoperability, and wider system integration. The survey is expected to be useful to system architects and protocol designers when choosing the communication protocols in an integrated IoT-to-fog-to-cloud system architecture.Peer ReviewedPostprint (author's final draft

    End-to-End Privacy for Open Big Data Markets

    Get PDF
    The idea of an open data market envisions the creation of a data trading model to facilitate exchange of data between different parties in the Internet of Things (IoT) domain. The data collected by IoT products and solutions are expected to be traded in these markets. Data owners will collect data using IoT products and solutions. Data consumers who are interested will negotiate with the data owners to get access to such data. Data captured by IoT products will allow data consumers to further understand the preferences and behaviours of data owners and to generate additional business value using different techniques ranging from waste reduction to personalized service offerings. In open data markets, data consumers will be able to give back part of the additional value generated to the data owners. However, privacy becomes a significant issue when data that can be used to derive extremely personal information is being traded. This paper discusses why privacy matters in the IoT domain in general and especially in open data markets and surveys existing privacy-preserving strategies and design techniques that can be used to facilitate end to end privacy for open data markets. We also highlight some of the major research challenges that need to be address in order to make the vision of open data markets a reality through ensuring the privacy of stakeholders.Comment: Accepted to be published in IEEE Cloud Computing Magazine: Special Issue Cloud Computing and the La
    • …
    corecore