95,720 research outputs found

    Maximizing Activity in Ising Networks via the TAP Approximation

    Full text link
    A wide array of complex biological, social, and physical systems have recently been shown to be quantitatively described by Ising models, which lie at the intersection of statistical physics and machine learning. Here, we study the fundamental question of how to optimize the state of a networked Ising system given a budget of external influence. In the continuous setting where one can tune the influence applied to each node, we propose a series of approximate gradient ascent algorithms based on the Plefka expansion, which generalizes the na\"{i}ve mean field and TAP approximations. In the discrete setting where one chooses a small set of influential nodes, the problem is equivalent to the famous influence maximization problem in social networks with an additional stochastic noise term. In this case, we provide sufficient conditions for when the objective is submodular, allowing a greedy algorithm to achieve an approximation ratio of 1−1/e1-1/e. Additionally, we compare the Ising-based algorithms with traditional influence maximization algorithms, demonstrating the practical importance of accurately modeling stochastic fluctuations in the system

    Flow-based Influence Graph Visual Summarization

    Full text link
    Visually mining a large influence graph is appealing yet challenging. People are amazed by pictures of newscasting graph on Twitter, engaged by hidden citation networks in academics, nevertheless often troubled by the unpleasant readability of the underlying visualization. Existing summarization methods enhance the graph visualization with blocked views, but have adverse effect on the latent influence structure. How can we visually summarize a large graph to maximize influence flows? In particular, how can we illustrate the impact of an individual node through the summarization? Can we maintain the appealing graph metaphor while preserving both the overall influence pattern and fine readability? To answer these questions, we first formally define the influence graph summarization problem. Second, we propose an end-to-end framework to solve the new problem. Our method can not only highlight the flow-based influence patterns in the visual summarization, but also inherently support rich graph attributes. Last, we present a theoretic analysis and report our experiment results. Both evidences demonstrate that our framework can effectively approximate the proposed influence graph summarization objective while outperforming previous methods in a typical scenario of visually mining academic citation networks.Comment: to appear in IEEE International Conference on Data Mining (ICDM), Shen Zhen, China, December 201

    Scalable Methods for Adaptively Seeding a Social Network

    Full text link
    In recent years, social networking platforms have developed into extraordinary channels for spreading and consuming information. Along with the rise of such infrastructure, there is continuous progress on techniques for spreading information effectively through influential users. In many applications, one is restricted to select influencers from a set of users who engaged with the topic being promoted, and due to the structure of social networks, these users often rank low in terms of their influence potential. An alternative approach one can consider is an adaptive method which selects users in a manner which targets their influential neighbors. The advantage of such an approach is that it leverages the friendship paradox in social networks: while users are often not influential, they often know someone who is. Despite the various complexities in such optimization problems, we show that scalable adaptive seeding is achievable. In particular, we develop algorithms for linear influence models with provable approximation guarantees that can be gracefully parallelized. To show the effectiveness of our methods we collected data from various verticals social network users follow. For each vertical, we collected data on the users who responded to a certain post as well as their neighbors, and applied our methods on this data. Our experiments show that adaptive seeding is scalable, and importantly, that it obtains dramatic improvements over standard approaches of information dissemination.Comment: Full version of the paper appearing in WWW 201

    Proposing a life cycle land use impact calculation methodology

    Get PDF
    The Life Cycle Assessment (LCA) community is yet to come to a consensus on a methodology to incorporate land use in LCA, still struggling with what exactly should be assessed and which indicators should be used. To solve this problem we start from concepts and models describing how ecosystems function and sustain, in order to understand how land use affects them. Earlier our research group presented a methodology based on the ecosystem exergy concept. This concept as based on the hypothesis that ecosystems develop towards more effective degradation of exergy fluxes passing through the system and is derived from two axioms: the principles of (i) maximum exergy storage and the (ii) maximum exergy dissipation. This concept aiming at the area of protection natural environment is different from conventional exergy analysis in LCA focusing on natural resources. To prevent confusion, the ecosystem exergy concept is further referred to as the MAximum Storage and Dissipation concept (MASD concept). In this paper we present how this concept identifies end-point impacts, mid-point impacts and mid-point indicators. The identified end-point impacts to assess are Ecosystem Structural Quality (ESQ) and Ecosystem Functional Quality (EFQ). In order to quantify these end-point impacts a dynamic multi-indicator set is proposed for quantifying the mid-point impacts on soil fertility, biodiversity and biomass production (quantifying the ESQ) and soil structure, vegetation structure and on-site water balance (quantifying the EFQ). Further we present an impact calculation method suitable for different environmental assessment tools and demonstrate the incorporation of the methodology in LCA
    • …
    corecore