2,470 research outputs found

    End-to-End Image Super-Resolution via Deep and Shallow Convolutional Networks

    Full text link
    One impressive advantage of convolutional neural networks (CNNs) is their ability to automatically learn feature representation from raw pixels, eliminating the need for hand-designed procedures. However, recent methods for single image super-resolution (SR) fail to maintain this advantage. They utilize CNNs in two decoupled steps, i.e., first upsampling the low resolution (LR) image to the high resolution (HR) size with hand-designed techniques (e.g., bicubic interpolation), and then applying CNNs on the upsampled LR image to reconstruct HR results. In this paper, we seek an alternative and propose a new image SR method, which jointly learns the feature extraction, upsampling and HR reconstruction modules, yielding a completely end-to-end trainable deep CNN. As opposed to existing approaches, the proposed method conducts upsampling in the latent feature space with filters that are optimized for the task of image SR. In addition, the HR reconstruction is performed in a multi-scale manner to simultaneously incorporate both short- and long-range contextual information, ensuring more accurate restoration of HR images. To facilitate network training, a new training approach is designed, which jointly trains the proposed deep network with a relatively shallow network, leading to faster convergence and more superior performance. The proposed method is extensively evaluated on widely adopted data sets and improves the performance of state-of-the-art methods with a considerable margin. Moreover, in-depth ablation studies are conducted to verify the contribution of different network designs to image SR, providing additional insights for future research

    Channel Splitting Network for Single MR Image Super-Resolution

    Full text link
    High resolution magnetic resonance (MR) imaging is desirable in many clinical applications due to its contribution to more accurate subsequent analyses and early clinical diagnoses. Single image super resolution (SISR) is an effective and cost efficient alternative technique to improve the spatial resolution of MR images. In the past few years, SISR methods based on deep learning techniques, especially convolutional neural networks (CNNs), have achieved state-of-the-art performance on natural images. However, the information is gradually weakened and training becomes increasingly difficult as the network deepens. The problem is more serious for medical images because lacking high quality and effective training samples makes deep models prone to underfitting or overfitting. Nevertheless, many current models treat the hierarchical features on different channels equivalently, which is not helpful for the models to deal with the hierarchical features discriminatively and targetedly. To this end, we present a novel channel splitting network (CSN) to ease the representational burden of deep models. The proposed CSN model divides the hierarchical features into two branches, i.e., residual branch and dense branch, with different information transmissions. The residual branch is able to promote feature reuse, while the dense branch is beneficial to the exploration of new features. Besides, we also adopt the merge-and-run mapping to facilitate information integration between different branches. Extensive experiments on various MR images, including proton density (PD), T1 and T2 images, show that the proposed CSN model achieves superior performance over other state-of-the-art SISR methods.Comment: 13 pages, 11 figures and 4 table

    MAANet: Multi-view Aware Attention Networks for Image Super-Resolution

    Full text link
    In most recent years, deep convolutional neural networks (DCNNs) based image super-resolution (SR) has gained increasing attention in multimedia and computer vision communities, focusing on restoring the high-resolution (HR) image from a low-resolution (LR) image. However, one nonnegligible flaw of DCNNs based methods is that most of them are not able to restore high-resolution images containing sufficient high-frequency information from low-resolution images with low-frequency information redundancy. Worse still, as the depth of DCNNs increases, the training easily encounters the problem of vanishing gradients, which makes the training more difficult. These problems hinder the effectiveness of DCNNs in image SR task. To solve these problems, we propose the Multi-view Aware Attention Networks (MAANet) for image SR task. Specifically, we propose the local aware (LA) and global aware (GA) attention to deal with LR features in unequal manners, which can highlight the high-frequency components and discriminate each feature from LR images in the local and the global views, respectively. Furthermore, we propose the local attentive residual-dense (LARD) block, which combines the LA attention with multiple residual and dense connections, to fit a deeper yet easy to train architecture. The experimental results show that our proposed approach can achieve remarkable performance compared with other state-of-the-art methods

    Compression Artifacts Reduction by a Deep Convolutional Network

    Full text link
    Lossy compression introduces complex compression artifacts, particularly the blocking artifacts, ringing effects and blurring. Existing algorithms either focus on removing blocking artifacts and produce blurred output, or restores sharpened images that are accompanied with ringing effects. Inspired by the deep convolutional networks (DCN) on super-resolution, we formulate a compact and efficient network for seamless attenuation of different compression artifacts. We also demonstrate that a deeper model can be effectively trained with the features learned in a shallow network. Following a similar "easy to hard" idea, we systematically investigate several practical transfer settings and show the effectiveness of transfer learning in low-level vision problems. Our method shows superior performance than the state-of-the-arts both on the benchmark datasets and the real-world use case (i.e. Twitter). In addition, we show that our method can be applied as pre-processing to facilitate other low-level vision routines when they take compressed images as input.Comment: 9 pages, 12 figures, conferenc

    Residual Dense Network for Image Super-Resolution

    Full text link
    A very deep convolutional neural network (CNN) has recently achieved great success for image super-resolution (SR) and offered hierarchical features as well. However, most deep CNN based SR models do not make full use of the hierarchical features from the original low-resolution (LR) images, thereby achieving relatively-low performance. In this paper, we propose a novel residual dense network (RDN) to address this problem in image SR. We fully exploit the hierarchical features from all the convolutional layers. Specifically, we propose residual dense block (RDB) to extract abundant local features via dense connected convolutional layers. RDB further allows direct connections from the state of preceding RDB to all the layers of current RDB, leading to a contiguous memory (CM) mechanism. Local feature fusion in RDB is then used to adaptively learn more effective features from preceding and current local features and stabilizes the training of wider network. After fully obtaining dense local features, we use global feature fusion to jointly and adaptively learn global hierarchical features in a holistic way. Extensive experiments on benchmark datasets with different degradation models show that our RDN achieves favorable performance against state-of-the-art methods.Comment: To appear in CVPR 2018 as spotligh

    Optical Flow Super-Resolution Based on Image Guidence Using Convolutional Neural Network

    Full text link
    The convolutional neural network model for optical flow estimation usually outputs a low-resolution(LR) optical flow field. To obtain the corresponding full image resolution,interpolation and variational approach are the most common options, which do not effectively improve the results. With the motivation of various convolutional neural network(CNN) structures succeeded in single image super-resolution(SISR) task, an end-to-end convolutional neural network is proposed to reconstruct the high resolution(HR) optical flow field from initial LR optical flow with the guidence of the first frame used in optical flow estimation. Our optical flow super-resolution(OFSR) problem differs from the general SISR problem in two main aspects. Firstly, the optical flow includes less texture information than image so that the SISR CNN structures can't be directly used in our OFSR problem. Secondly, the initial LR optical flow data contains estimation error, while the LR image data for SISR is generally a bicubic downsampled, blurred, and noisy version of HR ground truth. We evaluate the proposed approach on two different optical flow estimation mehods and show that it can not only obtain the full image resolution, but generate more accurate optical flow field (Accuracy improve 15% on FlyingChairs, 13% on MPI Sintel) with sharper edges than the estimation result of original method.Comment: 20 pages,7 figure

    Super Resolution Convolutional Neural Network Models for Enhancing Resolution of Rock Micro-CT Images

    Full text link
    Single Image Super Resolution (SISR) techniques based on Super Resolution Convolutional Neural Networks (SRCNN) are applied to micro-computed tomography ({\mu}CT) images of sandstone and carbonate rocks. Digital rock imaging is limited by the capability of the scanning device resulting in trade-offs between resolution and field of view, and super resolution methods tested in this study aim to compensate for these limits. SRCNN models SR-Resnet, Enhanced Deep SR (EDSR), and Wide-Activation Deep SR (WDSR) are used on the Digital Rock Super Resolution 1 (DRSRD1) Dataset of 4x downsampled images, comprising of 2000 high resolution (800x800) raw micro-CT images of Bentheimer sandstone and Estaillades carbonate. The trained models are applied to the validation and test data within the dataset and show a 3-5 dB rise in image quality compared to bicubic interpolation, with all tested models performing within a 0.1 dB range. Difference maps indicate that edge sharpness is completely recovered in images within the scope of the trained model, with only high frequency noise related detail loss. We find that aside from generation of high-resolution images, a beneficial side effect of super resolution methods applied to synthetically downgraded images is the removal of image noise while recovering edgewise sharpness which is beneficial for the segmentation process. The model is also tested against real low-resolution images of Bentheimer rock with image augmentation to account for natural noise and blur. The SRCNN method is shown to act as a preconditioner for image segmentation under these circumstances which naturally leads to further future development and training of models that segment an image directly. Image restoration by SRCNN on the rock images is of significantly higher quality than traditional methods and suggests SRCNN methods are a viable processing step in a digital rock workflow.Comment: 24 page

    Learning Spatial-Spectral Prior for Super-Resolution of Hyperspectral Imagery

    Full text link
    Recently, single gray/RGB image super-resolution reconstruction task has been extensively studied and made significant progress by leveraging the advanced machine learning techniques based on deep convolutional neural networks (DCNNs). However, there has been limited technical development focusing on single hyperspectral image super-resolution due to the high-dimensional and complex spectral patterns in hyperspectral image. In this paper, we make a step forward by investigating how to adapt state-of-the-art residual learning based single gray/RGB image super-resolution approaches for computationally efficient single hyperspectral image super-resolution, referred as SSPSR. Specifically, we introduce a spatial-spectral prior network (SSPN) to fully exploit the spatial information and the correlation between the spectra of the hyperspectral data. Considering that the hyperspectral training samples are scarce and the spectral dimension of hyperspectral image data is very high, it is nontrivial to train a stable and effective deep network. Therefore, a group convolution (with shared network parameters) and progressive upsampling framework is proposed. This will not only alleviate the difficulty in feature extraction due to high-dimension of the hyperspectral data, but also make the training process more stable. To exploit the spatial and spectral prior, we design a spatial-spectral block (SSB), which consists of a spatial residual module and a spectral attention residual module. Experimental results on some hyperspectral images demonstrate that the proposed SSPSR method enhances the details of the recovered high-resolution hyperspectral images, and outperforms state-of-the-arts. The source code is available at \url{https://github.com/junjun-jiang/SSPSRComment: Accepted for publication at IEEE Transactions on Computational Imagin

    Reverse Attention for Salient Object Detection

    Full text link
    Benefit from the quick development of deep learning techniques, salient object detection has achieved remarkable progresses recently. However, there still exists following two major challenges that hinder its application in embedded devices, low resolution output and heavy model weight. To this end, this paper presents an accurate yet compact deep network for efficient salient object detection. More specifically, given a coarse saliency prediction in the deepest layer, we first employ residual learning to learn side-output residual features for saliency refinement, which can be achieved with very limited convolutional parameters while keep accuracy. Secondly, we further propose reverse attention to guide such side-output residual learning in a top-down manner. By erasing the current predicted salient regions from side-output features, the network can eventually explore the missing object parts and details which results in high resolution and accuracy. Experiments on six benchmark datasets demonstrate that the proposed approach compares favorably against state-of-the-art methods, and with advantages in terms of simplicity, efficiency (45 FPS) and model size (81 MB).Comment: ECCV 201

    Image Restoration Using Convolutional Auto-encoders with Symmetric Skip Connections

    Full text link
    Image restoration, including image denoising, super resolution, inpainting, and so on, is a well-studied problem in computer vision and image processing, as well as a test bed for low-level image modeling algorithms. In this work, we propose a very deep fully convolutional auto-encoder network for image restoration, which is a encoding-decoding framework with symmetric convolutional-deconvolutional layers. In other words, the network is composed of multiple layers of convolution and de-convolution operators, learning end-to-end mappings from corrupted images to the original ones. The convolutional layers capture the abstraction of image contents while eliminating corruptions. Deconvolutional layers have the capability to upsample the feature maps and recover the image details. To deal with the problem that deeper networks tend to be more difficult to train, we propose to symmetrically link convolutional and deconvolutional layers with skip-layer connections, with which the training converges much faster and attains better results.Comment: 17 pages. A journal extension of the version at arXiv:1603.0905
    • …
    corecore