5,772 research outputs found

    On Multilingual Training of Neural Dependency Parsers

    Full text link
    We show that a recently proposed neural dependency parser can be improved by joint training on multiple languages from the same family. The parser is implemented as a deep neural network whose only input is orthographic representations of words. In order to successfully parse, the network has to discover how linguistically relevant concepts can be inferred from word spellings. We analyze the representations of characters and words that are learned by the network to establish which properties of languages were accounted for. In particular we show that the parser has approximately learned to associate Latin characters with their Cyrillic counterparts and that it can group Polish and Russian words that have a similar grammatical function. Finally, we evaluate the parser on selected languages from the Universal Dependencies dataset and show that it is competitive with other recently proposed state-of-the art methods, while having a simple structure.Comment: preprint accepted into the TSD201

    Structured Training for Neural Network Transition-Based Parsing

    Full text link
    We present structured perceptron training for neural network transition-based dependency parsing. We learn the neural network representation using a gold corpus augmented by a large number of automatically parsed sentences. Given this fixed network representation, we learn a final layer using the structured perceptron with beam-search decoding. On the Penn Treebank, our parser reaches 94.26% unlabeled and 92.41% labeled attachment accuracy, which to our knowledge is the best accuracy on Stanford Dependencies to date. We also provide in-depth ablative analysis to determine which aspects of our model provide the largest gains in accuracy

    An improved neural network model for joint POS tagging and dependency parsing

    Full text link
    We propose a novel neural network model for joint part-of-speech (POS) tagging and dependency parsing. Our model extends the well-known BIST graph-based dependency parser (Kiperwasser and Goldberg, 2016) by incorporating a BiLSTM-based tagging component to produce automatically predicted POS tags for the parser. On the benchmark English Penn treebank, our model obtains strong UAS and LAS scores at 94.51% and 92.87%, respectively, producing 1.5+% absolute improvements to the BIST graph-based parser, and also obtaining a state-of-the-art POS tagging accuracy at 97.97%. Furthermore, experimental results on parsing 61 "big" Universal Dependencies treebanks from raw texts show that our model outperforms the baseline UDPipe (Straka and Strakov\'a, 2017) with 0.8% higher average POS tagging score and 3.6% higher average LAS score. In addition, with our model, we also obtain state-of-the-art downstream task scores for biomedical event extraction and opinion analysis applications. Our code is available together with all pre-trained models at: https://github.com/datquocnguyen/jPTDPComment: 11 pages; In Proceedings of the CoNLL 2018 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies, to appea
    • …
    corecore