420 research outputs found

    Hardware Architecture Review of Swarm Robotics System: Self-Reconfigurability, Self-Reassembly, and Self-Replication

    Get PDF
    Swarm robotics is one of the most fascinating and new research areas of recent decades, and one of the grand challenges of robotics is the design of swarm robots that are self-sufficient. This can be crucial for robots exposed to environments that are unstructured or not easily accessible for a human operator, such as the inside of a blood vessel, a collapsed building, the deep sea, or the surface of another planet. In this paper, we present a comprehensive study on hardware architecture and several other important aspects of modular swarm robots, such as self-reconfigurability, self-replication, and self-assembly. The key factors in designing and building a group of swarm robots are cost and miniaturization with robustness, flexibility, and scalability. In robotics intelligence, self-assembly and self-reconfigurability are among the most important characteristics as they can add additional capabilities and functionality to swarm robots. Simulation and model design for swarm robotics is highly complex and expensive, especially when attempting to model the behavior of large swarm robot groups.http://dx.doi.org/10.5402/2013/84960

    Collaborative autonomy in heterogeneous multi-robot systems

    Get PDF
    As autonomous mobile robots become increasingly connected and widely deployed in different domains, managing multiple robots and their interaction is key to the future of ubiquitous autonomous systems. Indeed, robots are not individual entities anymore. Instead, many robots today are deployed as part of larger fleets or in teams. The benefits of multirobot collaboration, specially in heterogeneous groups, are multiple. Significantly higher degrees of situational awareness and understanding of their environment can be achieved when robots with different operational capabilities are deployed together. Examples of this include the Perseverance rover and the Ingenuity helicopter that NASA has deployed in Mars, or the highly heterogeneous robot teams that explored caves and other complex environments during the last DARPA Sub-T competition. This thesis delves into the wide topic of collaborative autonomy in multi-robot systems, encompassing some of the key elements required for achieving robust collaboration: solving collaborative decision-making problems; securing their operation, management and interaction; providing means for autonomous coordination in space and accurate global or relative state estimation; and achieving collaborative situational awareness through distributed perception and cooperative planning. The thesis covers novel formation control algorithms, and new ways to achieve accurate absolute or relative localization within multi-robot systems. It also explores the potential of distributed ledger technologies as an underlying framework to achieve collaborative decision-making in distributed robotic systems. Throughout the thesis, I introduce novel approaches to utilizing cryptographic elements and blockchain technology for securing the operation of autonomous robots, showing that sensor data and mission instructions can be validated in an end-to-end manner. I then shift the focus to localization and coordination, studying ultra-wideband (UWB) radios and their potential. I show how UWB-based ranging and localization can enable aerial robots to operate in GNSS-denied environments, with a study of the constraints and limitations. I also study the potential of UWB-based relative localization between aerial and ground robots for more accurate positioning in areas where GNSS signals degrade. In terms of coordination, I introduce two new algorithms for formation control that require zero to minimal communication, if enough degree of awareness of neighbor robots is available. These algorithms are validated in simulation and real-world experiments. The thesis concludes with the integration of a new approach to cooperative path planning algorithms and UWB-based relative localization for dense scene reconstruction using lidar and vision sensors in ground and aerial robots

    Heterogeneous Robot Swarm – Hardware Design and Implementation

    Get PDF
    Swarm robotics is one the most fascinating, new research areas in the field of robotics, and one of it's grand challenge is the design of swarm robots that are both heterogeneous and self-sufficient. This can be crucial for robots exposed to environments that are unstructured or not easily accessible for a human operator, such as a collapsed building, the deep sea, or the surface of another planet. In Swarm robotics; self-assembly, self-reconfigurability and self-replication are among the most important characteristics as they can add extra capabilities and functionality to the robots besides the robustness, flexibility and scalability. Developing a swarm robot system with heterogeneity and larger behavioral repertoire is addressed in this work. This project is a comprehensive study of the hardware architecture of the homogeneous robot swarm and several problems related to the important aspects of robot's hardware, such as: sensory units, communication among the modules, and hardware components. Most of the hardware platforms used in the swarm robot system are homogeneous and use centralized control architecture for task completion. The hardware architecture is designed and implemented for UB heterogeneous robot swarm with both decentralized and centralized control, depending on the task requirement. Each robot in the UB heterogeneous swarm is equipped with different sensors, actuators, microcontroller and communication modules, which makes them distinct from each other from a hardware point of view. The methodology provides detailed guidelines in designing and implementing the hardware architecture of the heterogeneous UB robot swarm with plug and play approach. We divided the design module into three main categories - sensory modules, locomotion and manipulation, communication and control. We conjecture that the hardware architecture of heterogeneous swarm robots implemented in this work is the most sophisticated and modular design to date
    • …
    corecore