108,175 research outputs found

    Deterministic End-to-End Transmission to Optimize the Network Efficiency and Quality of Service: A Paradigm Shift in 6G

    Full text link
    Toward end-to-end mobile service provision with optimized network efficiency and quality of service, tremendous efforts have been devoted in upgrading mobile applications, transport and internet networks, and wireless communication networks for many years. However, the inherent loose coordination between different layers in the end-to-end communication networks leads to unreliable data transmission with uncontrollable packet delay and packet error rate, and a terrible waste of network resources incurred for data re-transmission. In an attempt to shed some lights on how to tackle these challenges, design methodologies and some solutions for deterministic end-to-end transmission for 6G and beyond are presented, which will bring a paradigm shift to the end-to-end wireless communication networks.Comment: 5 pages, 2 figure

    Communication-Oriented Model Fine-Tuning for Packet-Loss Resilient Distributed Inference Under Highly Lossy IoT Networks

    Get PDF
    The distributed inference (DI) framework has gained traction as a technique for real-time applications empowered by cutting-edge deep machine learning (ML) on resource-constrained Internet of things (IoT) devices. In DI, computational tasks are offloaded from the IoT device to the edge server via lossy IoT networks. However, generally, there is a communication system-level trade-off between communication latency and reliability; thus, to provide accurate DI results, a reliable and high-latency communication system is required to be adapted, which results in non-negligible end-to-end latency of the DI. This motivated us to improve the trade-off between the communication latency and accuracy by efforts on ML techniques. Specifically, we have proposed a communication-oriented model tuning (COMtune), which aims to achieve highly accurate DI with low-latency but unreliable communication links. In COMtune, the key idea is to fine-tune the ML model by emulating the effect of unreliable communication links through the application of the dropout technique. This enables the DI system to obtain robustness against unreliable communication links. Our ML experiments revealed that COMtune enables accurate predictions with low latency and under lossy networks

    RTXP : A Localized Real-Time Mac-Routing Protocol for Wireless Sensor Networks

    Get PDF
    Protocols developed during the last years for Wireless Sensor Networks (WSNs) are mainly focused on energy efficiency and autonomous mechanisms (e.g. self-organization, self-configuration, etc). Nevertheless, with new WSN applications, appear new QoS requirements such as time constraints. Real-time applications require the packets to be delivered before a known time bound which depends on the application requirements. We particularly focus on applications which consist in alarms sent to the sink node. We propose Real-Time X-layer Protocol (RTXP), a real-time communication protocol. To the best of our knowledge, RTXP is the first MAC and routing real-time communication protocol that is not centralized, but instead relies only on local information. The solution is cross-layer (X-layer) because it allows to control the delays due to MAC and Routing layers interactions. RTXP uses a suited hop-count-based Virtual Coordinate System which allows deterministic medium access and forwarder selection. In this paper we describe the protocol mechanisms. We give theoretical bound on the end-to-end delay and the capacity of the protocol. Intensive simulation results confirm the theoretical predictions and allow to compare with a real-time centralized solution. RTXP is also simulated under harsh radio channel, in this case the radio link introduces probabilistic behavior. Nevertheless, we show that RTXP it performs better than a non-deterministic solution. It thus advocates for the usefulness of designing real-time (deterministic) protocols even for highly unreliable networks such as WSNs

    Energy Efficient Routing With Unreliable Links in Wireless Networks

    Full text link
    Abstract — Energy efficient routings and power control techniques in wireless networks have drawn considerable research interests recently. In this paper, we address the problem of energy efficient reliable routing in wireless networks in the presence of unreliable communication links or devices or lossy wireless link layers by integrating the power control techniques into the energy efficient routing. We study both the case when the link layer implements a perfect reliability and the case when the reliability is implemented through the transport layer, e.g., TCP. We study the energy efficient unicast and multicast when the links are unreliable. Subsequently, we study how to perform power control (thus, controlling the reliability of each communication link) such that the unicast routings use the least power when the communication links are unreliable while the power used by multicast is close to optimum. We presented both centralized algorithms and distributed algorithms for all the questions we studied. We conducted extensive simulations to study the power consumption, the end-to-end delay, and the network throughput of our protocols compared with existing protocols. I

    A Cooperative Diversity-Based Robust Mac Protocol in Wireless Ad Hoc Networks

    Get PDF
    In interference-rich and noisy environment, wireless communication is often hampered by unreliable communication links. Recently, there has been active research on cooperative communication that improves the communication reliability by having a collection of radio terminals transmit signals in a cooperative way. This paper proposes a medium access control (MAC) algorithm, called Cooperative Diversity MAC (CD-MAC), which exploits the cooperative communication capability of the physical (PHY) layer to improve robustness in wireless ad hoc networks. In CD-MAC, each terminal proactively selects a partner for cooperation and lets it transmit simultaneously so that this mitigates interference from nearby terminals, and thus, improves the network performance. For practicability, CD-MAC is designed based on the widely adopted IEEE 802.11 MAC. For accurate evaluation, this study presents and uses a realistic reception model by taking bit error rate (BER), derived from Intersil HFA3861B radio hardware, and the corresponding frame error rate (FER) into consideration. System-level simulation study shows that CD-MAC significantly outperforms the original IEEE 802.11 MAC in terms of packet delivery ratio and end-to-end delay

    Fine-Grained Reliability for V2V Communications around Suburban and Urban Intersections

    Full text link
    Safe transportation is a key use-case of the 5G/LTE Rel.15+ communications, where an end-to-end reliability of 0.99999 is expected for a vehicle-to-vehicle (V2V) transmission distance of 100-200 m. Since communications reliability is related to road-safety, it is crucial to verify the fulfillment of the performance, especially for accident-prone areas such as intersections. We derive closed-form expressions for the V2V transmission reliability near suburban corners and urban intersections over finite interference regions. The analysis is based on plausible street configurations, traffic scenarios, and empirically-supported channel propagation. We show the means by which the performance metric can serve as a preliminary design tool to meet a target reliability. We then apply meta distribution concepts to provide a careful dissection of V2V communications reliability. Contrary to existing work on infinite roads, when we consider finite road segments for practical deployment, fine-grained reliability per realization exhibits bimodal behavior. Either performance for a certain vehicular traffic scenario is very reliable or extremely unreliable, but nowhere in relatively proximity to the average performance. In other words, standard SINR-based average performance metrics are analytically accurate but can be insufficient from a practical viewpoint. Investigating other safety-critical point process networks at the meta distribution-level may reveal similar discrepancies.Comment: 27 pages, 6 figures, submitted to IEEE Transactions on Wireless Communication

    Voice Communication in Mobile Delay-Tolerant Networks

    Get PDF
    Push-to-talk (PTT) is one class of voice communication system generally employed in cellular phone services. Today's PTT services mainly rely on infrastructure and require stable end-to-end path for successful communication. But users with PTT enabled mobile devices may travel in challenged environments where infrastructure is not available or end-to-end path is highly unreliable. In such cases those PTT services may exhibit poor performance or may even fail completely. Even though some existing PTT solutions allow users to communicate in an ad-hoc fashion, they need sufficient node density to establish end-to-end path and eventually fail to communicate in sparse mobile ad-hoc environments. Delay-Tolerant Networking (DTN) is an emerging research area that addresses the communication requirements specfic to challenged networks. In this thesis we develop a voice communication system (DT-Talkie) which enables both individual and group users to communicate over infrastructure-less and challenged networks in the walkie-talkie fashion. The DTN concept of asynchronous message forwarding is applied to the DT-Talkie in order to transmit voice messages reliably. We employ variable-length fragmentation mechanism in the application layer with the vision to speed-up session interactivity in stable scenarios. Some approaches to resolve codec interoperability issues are implied in this thesis. To validate the concepts of the DT-Talkie, we implement an application for Maemo based Nokia Internet Tablets, leveraging the DTN reference implementation developed in the DTN Research Group. Moreover in this thesis we evaluate the performance of the DT-Talkie through conducting a set of simulations using several DTN routing protocols and using different mobility models

    Trust model genetic node recovery based on cloud theory for underwater acoustic sensor network

    Get PDF
    Underwater Acoustic Sensor Networks [UASNs] are becoming a very growing research topic in the field of WSNs. UASNs are harmful by many attacks such as Jamming attacks at the physical layer, Collision attacks at the data link layer and Dos attacks at the network layer. UASNs has a unique characteristic such as unreliable communication, mobility, and computation of underwater sensor network. Because of this the traditional security mechanism, e.g. cryptographic, encryption, authorization and authentications are not suitable for UASNs. Many trust mechanisms of TWSNs [Terrestrial Wireless Sensor Networks] had proposed to UASNs and failed to provide security for UASNs environment, due to dynamic network structure and weak link connection between sensors. In this paper, a novel Trust Model Genetic Algorithm based on Cloud Theory [TMC] for UASNs has been proposed. The TMC-GA suggested a genetic node recovery algorithm to improve the TMC network in terms of better network lifetime, residual energy and total energy consumption. Also ensures that sensor nodes are participating in the rerouting in the routing discovery and performs well in terms of successful packet delivery. Simulation result provides that the proposed TMC-Genetic node recovery algorithm outperforms compared to other related works in terms of the number of hops, end-to-end delay, total energy consumption, residual energy, routing overhead, throughput and network lifetime
    corecore