44 research outputs found

    End-to-end 6-DoF Object Pose Estimation through Differentiable Rasterization

    Get PDF
    Here we introduce an approximated differentiable renderer to refine a 6-DoF pose prediction using only 2D alignment information. To this end, a two-branched convolutional encoder network is employed to jointly estimate the object class and its 6-DoF pose in the scene. We then propose a new formulation of an approximated differentiable renderer to re-project the 3D object on the image according to its predicted pose; in this way the alignment error between the observed and the re-projected object silhouette can be measured. Since the renderer is differentiable, it is possible to back-propagate through it to correct the estimated pose at test time in an online learning fashion. Eventually we show how to leverage the classification branch to profitably re-project a representative model of the predicted class (i.e. a medoid) instead. Each object in the scene is processed independently and novel viewpoints in which both objects arrangement and mutual pose are preserved can be rendered. Differentiable renderer code is available at:https://github.com/ndrplz/tensorflow-mesh-renderer

    iNeRF: Inverting Neural Radiance Fields for Pose Estimation

    Full text link
    We present iNeRF, a framework that performs mesh-free pose estimation by "inverting" a Neural RadianceField (NeRF). NeRFs have been shown to be remarkably effective for the task of view synthesis - synthesizing photorealistic novel views of real-world scenes or objects. In this work, we investigate whether we can apply analysis-by-synthesis via NeRF for mesh-free, RGB-only 6DoF pose estimation - given an image, find the translation and rotation of a camera relative to a 3D object or scene. Our method assumes that no object mesh models are available during either training or test time. Starting from an initial pose estimate, we use gradient descent to minimize the residual between pixels rendered from a NeRF and pixels in an observed image. In our experiments, we first study 1) how to sample rays during pose refinement for iNeRF to collect informative gradients and 2) how different batch sizes of rays affect iNeRF on a synthetic dataset. We then show that for complex real-world scenes from the LLFF dataset, iNeRF can improve NeRF by estimating the camera poses of novel images and using these images as additional training data for NeRF. Finally, we show iNeRF can perform category-level object pose estimation, including object instances not seen during training, with RGB images by inverting a NeRF model inferred from a single view.Comment: Website: http://yenchenlin.me/inerf
    corecore