1,354 research outputs found

    Studies on Trajectory Tracking of Two Link Planar Manipulator

    Get PDF
    In robotic manipulator control situations, high accuracy trajectory tracking is one of the challenging aspects. This is due to nonlinearities in dynamics and input coupling present in the robotic arm. In the present work, a two link planar manipulator revolving in a horizontal plane is considered. Its kinematics, Jacobian analysis, dynamic equations are obtained from modelling. It is proposed to use this manipulator for following a desired trajectory by using an effective control method. Initially, computed torque control scheme is used to obtain the end effector motions. The dynamic equations are solved by numerical method and the joint space results are used to obtain the error and its derivative. This linearized error dynamic control uses constant gains and an attempt is made to obtain a correct set of gains in each error cycle to refine the control performance. A scaled prototype is made with aluminium links and joint servos. A mechatronic system with an arduino microcontroller board is employed to drive the servos in incremental fashion as per the tracking point and its inverse kinematics. The computer results are shown for two trajectories namely a straight line and spline. The errors are reported as a function of time and the corresponding joint torques computed in each time step are plotted. Finally to illustrate the mechatronic control system on the prototype, a path containing three points is considered and corresponding errors and repeatability are presented

    Impedance Control of Flexible Robot Manipulators

    Get PDF

    AI based Robot Safe Learning and Control

    Get PDF
    Introduction This open access book mainly focuses on the safe control of robot manipulators. The control schemes are mainly developed based on dynamic neural network, which is an important theoretical branch of deep reinforcement learning. In order to enhance the safety performance of robot systems, the control strategies include adaptive tracking control for robots with model uncertainties, compliance control in uncertain environments, obstacle avoidance in dynamic workspace. The idea for this book on solving safe control of robot arms was conceived during the industrial applications and the research discussion in the laboratory. Most of the materials in this book are derived from the authors’ papers published in journals, such as IEEE Transactions on Industrial Electronics, neurocomputing, etc. This book can be used as a reference book for researcher and designer of the robotic systems and AI based controllers, and can also be used as a reference book for senior undergraduate and graduate students in colleges and universities

    Advanced Strategies for Robot Manipulators

    Get PDF
    Amongst the robotic systems, robot manipulators have proven themselves to be of increasing importance and are widely adopted to substitute for human in repetitive and/or hazardous tasks. Modern manipulators are designed complicatedly and need to do more precise, crucial and critical tasks. So, the simple traditional control methods cannot be efficient, and advanced control strategies with considering special constraints are needed to establish. In spite of the fact that groundbreaking researches have been carried out in this realm until now, there are still many novel aspects which have to be explored
    corecore