22,216 research outputs found

    Virtual assembly rapid prototyping of near net shapes

    Get PDF
    Virtual reality (VR) provides another dimension to many engineering applications. Its immersive and interactive nature allows an intuitive approach to study both cognitive activities and performance evaluation. Market competitiveness means having products meet form, fit and function quickly. Rapid Prototyping and Manufacturing (RP&M) technologies are increasingly being applied to produce functional prototypes and the direct manufacturing of small components. Despite its flexibility, these systems have common drawbacks such as slow build rates, a limited number of build axes (typically one) and the need for post processing. This paper presents a Virtual Assembly Rapid Prototyping (VARP) project which involves evaluating cognitive activities in assembly tasks based on the adoption of immersive virtual reality along with a novel non-layered rapid prototyping for near net shape (NNS) manufacturing of components. It is envisaged that this integrated project will facilitate a better understanding of design for manufacture and assembly by utilising equivalent scale digital and physical prototyping in one rapid prototyping system. The state of the art of the VARP project is also presented in this paper

    Virtual bloXing - assembly rapid prototyping for near net shapes

    Get PDF
    Virtual reality (VR) provides another dimension to many engineering applications. Its immersive and interactive nature allows an intuitive approach to study both cognitive activities and performance evaluation. Market competitiveness means having products meet form, fit and function quickly. Rapid Prototyping and Manufacturing (RP&M) technologies are increasingly being applied to produce functional prototypes and the direct manufacturing of small components. Despite its flexibility, these systems have common drawbacks such as slow build rates, a limited number of build axes (typically one) and the need for post processing. This paper presents a Virtual Assembly Rapid Prototyping (VARP) project which involves evaluating cognitive activities in assembly tasks based on the adoption of immersive virtual reality along with a novel nonlayered rapid prototyping for near net shape (NNS) manufacturing of components. It is envisaged that this integrated project will facilitate a better understanding of design for manufacture and assembly by utilising equivalent scale digital and physical prototyping in one rapid prototyping system. The state of the art of the VARP project is also presented in this paper

    A requirements engineering framework for integrated systems development for the construction industry

    Get PDF
    Computer Integrated Construction (CIC) systems are computer environments through which collaborative working can be undertaken. Although many CIC systems have been developed to demonstrate the communication and collaboration within the construction projects, the uptake of CICs by the industry is still inadequate. This is mainly due to the fact that research methodologies of the CIC development projects are incomplete to bridge the technology transfer gap. Therefore, defining comprehensive methodologies for the development of these systems and their effective implementation on real construction projects is vital. Requirements Engineering (RE) can contribute to the effective uptake of these systems because it drives the systems development for the targeted audience. This paper proposes a requirements engineering approach for industry driven CIC systems development. While some CIC systems are investigated to build a broad and deep contextual knowledge in the area, the EU funded research project, DIVERCITY (Distributed Virtual Workspace for Enhancing Communication within the Construction Industry), is analysed as the main case study project because its requirements engineering approach has the potential to determine a framework for the adaptation of requirements engineering in order to contribute towards the uptake of CIC systems

    Paper-based Mixed Reality Sketch Augmentation as a Conceptual Design Support Tool

    Get PDF
    This undergraduate student paper explores usage of mixed reality techniques as support tools for conceptual design. A proof-of-concept was developed to illustrate this principle. Using this as an example, a small group of designers was interviewed to determine their views on the use of this technology. These interviews are the main contribution of this paper. Several interesting applications were determined, suggesting possible usage in a wide range of domains. Paper-based sketching, mixed reality and sketch augmentation techniques complement each other, and the combination results in a highly intuitive interface

    Tangible user interfaces : past, present and future directions

    Get PDF
    In the last two decades, Tangible User Interfaces (TUIs) have emerged as a new interface type that interlinks the digital and physical worlds. Drawing upon users' knowledge and skills of interaction with the real non-digital world, TUIs show a potential to enhance the way in which people interact with and leverage digital information. However, TUI research is still in its infancy and extensive research is required in or- der to fully understand the implications of tangible user interfaces, to develop technologies that further bridge the digital and the physical, and to guide TUI design with empirical knowledge. This paper examines the existing body of work on Tangible User In- terfaces. We start by sketching the history of tangible user interfaces, examining the intellectual origins of this ïŹeld. We then present TUIs in a broader context, survey application domains, and review frame- works and taxonomies. We also discuss conceptual foundations of TUIs including perspectives from cognitive sciences, phycology, and philoso- phy. Methods and technologies for designing, building, and evaluating TUIs are also addressed. Finally, we discuss the strengths and limita- tions of TUIs and chart directions for future research

    Include 2011 : The role of inclusive design in making social innovation happen.

    Get PDF
    Include is the biennial conference held at the RCA and hosted by the Helen Hamlyn Centre for Design. The event is directed by Jo-Anne Bichard and attracts an international delegation

    Engaging educators in the ideation of scenarios for cross-reality game-based learning experiences

    Get PDF
    Cross-reality media technology creates alternate reality experiences in which the physical and the virtual world are interconnected and influence each other through a network of sensors and actuators. Despite technological advances, the landscape of cross-reality technology as an enabler of alternate reality educational experiences has not been explored yet. The technical expertise required to set up and program such mixed environments is too high to engage the problem owners (i.e. educational experts) in the design process and, hence, user-driven innovation remains challenging. In this paper we explore the co-creation of cross-reality experiences for educational games. We created a no-programming toolkit that provides a visual language and interface abstractions to quickly build prototypes of cross-reality interactions. The toolkit supports experience prototyping and allows designers to coproduce, with educational experts, meaningful scenarios while they create, try out and reconfigure their prototypes. We report on a workshop with 36 educators where the toolkit was used to ideate cross-reality games for education. We discuss use cases of game-based learning applications developed by the participants that follow different pedagogical strategies and combine different physical and virtual spaces and times. We outline implications for the design of cross-reality interactions in educational settings that trigger further research and technological developments.Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature (Funding for APC: Universidad Carlos III de Madrid - Read & Publish Agreement CRUE-CSIC 2022). This work is supported by the projects CROSS-COLAB (PGC2018–101884-B-I00) and Sense2makeSense (PID2019-109388GB-I00) funded by the Spanish State Research Agency

    Narrative Generation in Entertainment: Using Artificial Intelligence Planning

    Get PDF
    From the field of artificial intelligence (AI) there is a growing stream of technology capable of being embedded in software that will reshape the way we interact with our environment in our everyday lives. This ‘AI software’ is often used to tackle more mundane tasks that are otherwise dangerous or meticulous for a human to accomplish. One particular area, explored in this paper, is for AI software to assist in supporting the enjoyable aspects of the lives of humans. Entertainment is one of these aspects, and often includes storytelling in some form no matter what the type of media, including television, films, video games, etc. This paper aims to explore the ability of AI software to automate the story-creation and story-telling process. This is part of the field of Automatic Narrative Generator (ANG), which aims to produce intuitive interfaces to support people (without any previous programming experience) to use tools to generate stories, based on their ideas of the kind of characters, intentions, events and spaces they want to be in the story. The paper includes details of such AI software created by the author that can be downloaded and used by the reader for this purpose. Applications of this kind of technology include the automatic generation of story lines for ‘soap operas’
    • 

    corecore