922 research outputs found

    Sensorless Physical Human-robot Interaction Using Deep-Learning

    Full text link
    Physical human-robot interaction has been an area of interest for decades. Collaborative tasks, such as joint compliance, demand high-quality joint torque sensing. While external torque sensors are reliable, they come with the drawbacks of being expensive and vulnerable to impacts. To address these issues, studies have been conducted to estimate external torques using only internal signals, such as joint states and current measurements. However, insufficient attention has been given to friction hysteresis approximation, which is crucial for tasks involving extensive dynamic to static state transitions. In this paper, we propose a deep-learning-based method that leverages a novel long-term memory scheme to achieve dynamics identification, accurately approximating the static hysteresis. We also introduce modifications to the well-known Residual Learning architecture, retaining high accuracy while reducing inference time. The robustness of the proposed method is illustrated through a joint compliance and task compliance experiment.Comment: 7 pages, ICRA 2024 Submissio

    Advanced Strategies for Robot Manipulators

    Get PDF
    Amongst the robotic systems, robot manipulators have proven themselves to be of increasing importance and are widely adopted to substitute for human in repetitive and/or hazardous tasks. Modern manipulators are designed complicatedly and need to do more precise, crucial and critical tasks. So, the simple traditional control methods cannot be efficient, and advanced control strategies with considering special constraints are needed to establish. In spite of the fact that groundbreaking researches have been carried out in this realm until now, there are still many novel aspects which have to be explored

    Neural-learning-based force sensorless admittance control for robots with input deadzone

    Get PDF
    This paper presents a neural networks based admittance control scheme for robotic manipulators when interacting with the unknown environment in the presence of the actuator deadzone without needing force sensing. A compliant behaviour of robotic manipulators in response to external torques from the unknown environment is achieved by admittance control. Inspired by broad learning system (BLS), a flatted neural network structure using Radial Basis Function (RBF) with incremental learning algorithm is proposed to estimate the external torque, which can avoid retraining process if the system is modelled insufficiently. To deal with uncertainties in the robot system, an adaptive neural controller with dynamic learning framework is developed to ensure the tracking performance. Experiments on the Baxter robot have been implemented to test the effectiveness of the proposed method

    INTELLIGENT CONTROLLING THE GRIPPING FORCE OF AN OBJECT BY TWO COMPUTER-CONTROLLED COOPERATIVE ROBOTS

    Get PDF
    This paper presents a Multiple Adaptive Neuro-Fuzzy Inference System (MANFIS)-based method for regulating the handling force of a common object. The foundation of this method is the prediction of the inverse dynamics of a cooperative robotic system made up of two 3-DOF robotic manipulators. Considering the no slip in contact between the tool and the object, an object is moved. to create and feed the MANFIS database, the inverse kinematics and dynamic equations of motion for the closed chain of motion for both arms are established in Matlab. Results from a SimMechanic simulation are given to demonstrate how well the suggested ANFIS controller works. Several manipulated object movements covering the shared workspace of the two manipulator arms are used to test the proposed control strategy

    Robot Manipulators

    Get PDF
    Robot manipulators are developing more in the direction of industrial robots than of human workers. Recently, the applications of robot manipulators are spreading their focus, for example Da Vinci as a medical robot, ASIMO as a humanoid robot and so on. There are many research topics within the field of robot manipulators, e.g. motion planning, cooperation with a human, and fusion with external sensors like vision, haptic and force, etc. Moreover, these include both technical problems in the industry and theoretical problems in the academic fields. This book is a collection of papers presenting the latest research issues from around the world

    Robotics 2010

    Get PDF
    Without a doubt, robotics has made an incredible progress over the last decades. The vision of developing, designing and creating technical systems that help humans to achieve hard and complex tasks, has intelligently led to an incredible variety of solutions. There are barely technical fields that could exhibit more interdisciplinary interconnections like robotics. This fact is generated by highly complex challenges imposed by robotic systems, especially the requirement on intelligent and autonomous operation. This book tries to give an insight into the evolutionary process that takes place in robotics. It provides articles covering a wide range of this exciting area. The progress of technical challenges and concepts may illuminate the relationship between developments that seem to be completely different at first sight. The robotics remains an exciting scientific and engineering field. The community looks optimistically ahead and also looks forward for the future challenges and new development

    Survey of Visual and Force/Tactile Control of Robots for Physical Interaction in Spain

    Get PDF
    Sensors provide robotic systems with the information required to perceive the changes that happen in unstructured environments and modify their actions accordingly. The robotic controllers which process and analyze this sensory information are usually based on three types of sensors (visual, force/torque and tactile) which identify the most widespread robotic control strategies: visual servoing control, force control and tactile control. This paper presents a detailed review on the sensor architectures, algorithmic techniques and applications which have been developed by Spanish researchers in order to implement these mono-sensor and multi-sensor controllers which combine several sensors

    Control Techniques for Robot Manipulator Systems with Modeling Uncertainties

    Get PDF
    This dissertation describes the design and implementation of various nonlinear control strategies for robot manipulators whose dynamic or kinematic models are uncertain. Chapter 2 describes the development of an adaptive task-space tracking controller for robot manipulators with uncertainty in the kinematic and dynamic models. The controller is developed based on the unit quaternion representation so that singularities associated with the otherwise commonly used three parameter representations are avoided. Experimental results for a planar application of the Barrett whole arm manipulator (WAM) are provided to illustrate the performance of the developed adaptive controller. The controller developed in Chapter 2 requires the assumption that the manipulator models are linearly parameterizable. However there might be scenarios where the structure of the manipulator dynamic model itself is unknown due to difficulty in modeling. One such example is the continuum or hyper-redundant robot manipulator. These manipulators do not have rigid joints, hence, they are difficult to model and this leads to significant challenges in developing high-performance control algorithms. In Chapter 3, a joint level controller for continuum robots is described which utilizes a neural network feedforward component to compensate for dynamic uncertainties. Experimental results are provided to illustrate that the addition of the neural network feedforward component to the controller provides improved tracking performance. While Chapter\u27s 2 and 3 described two different joint controllers for robot manipulators, in Chapter 4 a controller is developed for the specific task of whole arm grasping using a kinematically redundant robot manipulator. The whole arm grasping control problem is broken down into two steps; first, a kinematic level path planner is designed which facilitates the encoding of both the end-effector position as well as the manipulators self-motion positioning information as a desired trajectory for the manipulator joints. Then, the controller described in Chapter 3, which provides asymptotic tracking of the encoded desired joint trajectory in the presence of dynamic uncertainties is utilized. Experimental results using the Barrett Whole Arm Manipulator are presented to demonstrate the validity of the approach

    Modeling, simulation and control of microrobots for the microfactory.

    Get PDF
    Future assembly technologies will involve higher levels of automation in order to satisfy increased microscale or nanoscale precision requirements. Traditionally, assembly using a top-down robotic approach has been well-studied and applied to the microelectronics and MEMS industries, but less so in nanotechnology. With the boom of nanotechnology since the 1990s, newly designed products with new materials, coatings, and nanoparticles are gradually entering everyone’s lives, while the industry has grown into a billion-dollar volume worldwide. Traditionally, nanotechnology products are assembled using bottom-up methods, such as self-assembly, rather than top-down robotic assembly. This is due to considerations of volume handling of large quantities of components, and the high cost associated with top-down manipulation requiring precision. However, bottom-up manufacturing methods have certain limitations, such as components needing to have predefined shapes and surface coatings, and the number of assembly components being limited to very few. For example, in the case of self-assembly of nano-cubes with an origami design, post-assembly manipulation of cubes in large quantities and cost-efficiency is still challenging. In this thesis, we envision a new paradigm for nanoscale assembly, realized with the help of a wafer-scale microfactory containing large numbers of MEMS microrobots. These robots will work together to enhance the throughput of the factory, while their cost will be reduced when compared to conventional nanopositioners. To fulfill the microfactory vision, numerous challenges related to design, power, control, and nanoscale task completion by these microrobots must be overcome. In this work, we study two classes of microrobots for the microfactory: stationary microrobots and mobile microrobots. For the stationary microrobots in our microfactory application, we have designed and modeled two different types of microrobots, the AFAM (Articulated Four Axes Microrobot) and the SolarPede. The AFAM is a millimeter-size robotic arm working as a nanomanipulator for nanoparticles with four degrees of freedom, while the SolarPede is a light-powered centimeter-size robotic conveyor in the microfactory. For mobile microrobots, we have introduced the world’s first laser-driven micrometer-size locomotor in dry environments, called ChevBot to prove the concept of the motion mechanism. The ChevBot is fabricated using MEMS technology in the cleanroom, following a microassembly step. We showed that it can perform locomotion with pulsed laser energy on a dry surface. Based on the knowledge gained with the ChevBot, we refined tits fabrication process to remove the assembly step and increase its reliability. We designed and fabricated a steerable microrobot, the SerpenBot, in order to achieve controllable behavior with the guidance of a laser beam. Through modeling and experimental study of the characteristics of this type of microrobot, we proposed and validated a new type of deep learning controller, the PID-Bayes neural network controller. The experiments showed that the SerpenBot can achieve closed-loop autonomous operation on a dry substrate
    • 

    corecore