18,398 research outputs found

    Real-Time Anomaly Detection in Cold Chain Transportation Using IoT Technology

    Get PDF
    There are approximately 88 million tonnes of food waste generated annually in the EU alone. Food spoilage during distribution accounts for some of this waste. To minimise this spoilage, it is of utmost importance to maintain the cold chain during the transportation of perishable foods such as meats, fruits, and vegetables. However, these products are often unfortunately wasted in large quantities when unpredictable failures occur in the refrigeration units of transport vehicles. This work proposes a real-time IoT anomaly detection system to detect equipment failures and provide decision support options to warehouse staff and delivery drivers, thus reducing potential food wastage. We developed a bespoke Internet of Things (IoT) solution for real-time product monitoring and alerting during cold chain transportation, which is based on the Digital Matter Eagle cellular data logger and two temperature probes. A visual dashboard was developed to allow logistics staff to perform monitoring, and business-defined temperature thresholds were used to develop a text and email decision support system, notifying relevant staff members if anomalies were detected. The IoT anomaly detection system was deployed with Musgrave Marketplace, Ireland’s largest grocery distributor, in three of their delivery vans operating in the greater Belfast area. Results show that the LTE-M cellular IoT system is power efficient and avoids sending false alerts due to the novel alerting system which was developed based on trip detection

    Warehouse monitoring, data logging and interface implementation based on internet of things application

    Get PDF
    Mestrado em ESTG-IPBDue to the high demand for wood around the world, wood warehouses are becoming increasingly popular. As a result, the large amount of stored wood requires special attention to maintain its quality, as well as, the protection of wood warehouses, which can now be accomplished thanks to the Internet of Things platforms and applications, therefore, this project aims to develop a system capable of real-time monitoring of the wood warehouse, based on the ATMEGA328P microcontroller, LoRa technology for data transmission, as well as, flame, gas, humidity, and temperature sensors, in order to prevent any disaster that could affect the warehouse operators, as well as, it can due to a significant losses of stored wood and its quality, Finally, to preserve the environment from the fire ignitions.Devido à grande procura de madeira em todo o mundo, os armazéns de madeira estão a tornar-se cada vez mais populares. Como resultado, a grande quantidade de madeira armazenada requer uma atenção especial para manter a sua qualidade, bem como a protecção dos armazéns de madeira, o que agora pode ser conseguido graças às plataformas e aplicações da Internet das Coisas, portanto, Este projecto visa desenvolver um sistema capaz de monitorização em tempo real do armazém de madeira, baseado no microcontrolador ATMEGA328P, tecnologia LoRa para transmissão de dados, bem como sensores de chama, gás, humidade e temperatura, a fim de evitar qualquer catástrofe que possa afectar os operadores do armazém, bem como perdas significativas de madeira armazenada e da sua qualidade, finalmente, para preservar o ambiente do risco de incêndio

    Informacijski servisni sustav za poljoprivredni IoT

    Get PDF
    Internet of Things (IoT) was faced with some difficulties which contained mass data management, various standards of object identification, data fusion of multiple sources, business data management and information service providing. In China, some safety monitoring systems of agricultural product always adopt centralized system architecture in which the data is stored concentratively. These systems could not be connected with or accessed by each other. This paper proposed an information system of agriculture Internet of Things based on distributed architecture. A distributed information service system based on IoT-Information Service, Object Naming Service, Discovery Service is designed to provide public information service including of capturing, standardizing, managing and querying of massive business data of agriculture production. A coding scheme for agricultural product, business location and logistic unit is provided for data identification. A business event model of agriculture IoT is presented for business data management. The whole system realizes the tracking and tracing of agricultural products, and quality monitoring of agriculture production. The implementation of this information service system is introduced.Internet stvari suočen je s poteškoćama poput upravljanja s velikom količinom podataka, različitim standardnima identifikacije objekata, fuzije podataka iz više izvora, upravljanja poslovnim podatcima i pružanje informacijskih usluga. Sigurnosno nadgledanje poljoprivrednih proizvoda u Kini uvijek podliježe centraliziranoj arhitekturi gdje su podatci koncentrirani na jednom mjestu. Takvi sustavi ne mogu biti povezani jedni s drugim te jedan drugome ne mogu pristupati. U ovome radu predložen je informacijski sustav za poljoprivredni internet stvari temeljen na distribuiranoj arhitekturi. Distribuirani informacijski servisni sustav baziran na IoT (Internet stvari), sustav za imenovanje objekata i sustav za otkrivanje omogućuju javni informacijski servis uključujući prikupljanje, standardizaciju, upravljanje i ispitivanje velikih količina podataka o poljoprivrednim proizvodima. Prikazana je shema kodiranja za poljopoprivredne proizvode, poslovne lokacije i logističke jedinice za identifikaciju podataka. Poslovni model doga.aja za poljoprivredni IoT je prezentiran za upravljanje poslovnim podatcima. Cjelokupni sustav omogućuje praćenje poljoprivrednih proizvoda te nadgledanje njihove kvalitete. Rad tako.er daje uvid u implementaciju informacijskog servisnog sustava

    IoT platform for seafood farmers and consumers

    Get PDF
    There has been a strong growth in aquatic products supported by the global seafood industry. Consumers demand information transparency to support informed decisions and to verify nutrition, food safety, and sustainable operations. Supporting these needs rests on the existence of interoperable Internet of Things (IoT) platforms for traceability that goes beyond the minimum “one up, one down” scheme required by regulators. Seafood farmers, being the source of both food and food-information, are critical to achieving the needed transparency. Traditionally, seafood farmers carry the costs of providing information, while downstream actors reap the benefits, causing limited provision of information. Now, global standards for labelling, data from IoT devices, and the reciprocity of utility from collecting data while sharing them represent great potential for farmers to generate value from traceability systems. To enable this, farmers need an IoT platform integrated with other IoT platforms in the value network. This paper presents a case study of an enterprise-level IoT platform for seafood farmers that satisfies consumers’ end-to-end traceability needs while extracting data from requests for information from downstream actors. Keywords: IoT platform, seafood traceability, seafood farmer, reciprocity, supply chain, valuepublishedVersio

    Usability of Real Time Data for Cold Chain Monitoring Systems

    Get PDF
    One in every nine people on earth do not have enough food to lead a healthy life, according to The World Food Programme. That\u27s nearly 800 million people. In addition to that, billions of tons of perishable food products are wasted during transportation and logistics before it reaches the end consumers as thousands of people die every day due to hunger related causes. Perishable foods, medicine and other goods impose severe challenges on inventory management. Businesses debate on whether to keep limited stock just to meet demand and fear losing additional customers or keep excess stock and face the risk of expiry of goods. Unlike the transportation of other goods, perishable food products and medicines undergo tremendous degradation in quality as a function of environmental conditions over time. Perishable food products are usually stored in frozen and refrigerated condition at the distribution centers, supermarkets and during the transit in order to preserve the quality of food and extend the shelf life. Even though, temperature controlled supply chain in the food retail sector has become commonplace, there is one major limitation of the current practice in the chilled food chain management. The printed \u27sell-by-date\u27 is not a true indicator of the quality of the product as it does not reflect the temperature variations during distribution at the different stages of the food supply chain. The food quality is severely compromised when actual environmental conditions deviate from the expected conditions. This research proposes the use of real-time sensor data to support supply chain decisions and describe a model for gauging and improving usability on the real-time sensor data. Data reported through the wireless sensor networks could help in predicting the shelf-life of perishable food products and preventing them from spoilage. Use of sensor data would encourage data driven decision making rather than intuition. The findings would encourage businesses operating in the cold chain environment in exploring value added innovation opportunities through internet of things use cases and improve the usability experience and competitiveness of their supply chains via warehouse workers and truck drivers

    Cost-Effective Implementation of a Temperature Traceability System Based on Smart RFID Tags and IoT Services

    Full text link
    [EN] This paper presents the design and validation of a traceability system, based on radio frequency identification (RFID) technology and Internet of Things (IoT) services, intended to address the interconnection and cost-implementation problems typical in traceability systems. The RFID layer integrates temperature sensors into RFID tags, to track and trace food conditions during transportation. The IoT paradigm makes it possible to connect multiple systems to the same platform, addressing interconnection problems between different technology providers. The cost-implementation issues are addressed following the Data as a Service (DaaS) billing scheme, where users pay for the data they consume and not the installed equipment, avoiding the big initial investment that these high-tech solutions commonly require. The developed system is validated in two case scenarios, one carried out in controlled laboratory conditions, monitoring chopped pumpkin. Another case, carried out in a real scenario, monitors oranges sent from Valencia, Spain to Cork, Ireland.Urbano, O.; Perles, A.; Pedraza, C.; Rubio-Arraez, S.; Castelló Gómez, ML.; Ortolá Ortolá, MD.; Mercado Romero, R. (2020). Cost-Effective Implementation of a Temperature Traceability System Based on Smart RFID Tags and IoT Services. Sensors. 20(4):1-19. https://doi.org/10.3390/s20041163119204Aung, M. M., & Chang, Y. S. (2014). Traceability in a food supply chain: Safety and quality perspectives. Food Control, 39, 172-184. doi:10.1016/j.foodcont.2013.11.007Bosona, T., & Gebresenbet, G. (2013). Food traceability as an integral part of logistics management in food and agricultural supply chain. Food Control, 33(1), 32-48. doi:10.1016/j.foodcont.2013.02.004Bechini, A., Cimino, M. G. C. A., Marcelloni, F., & Tomasi, A. (2008). Patterns and technologies for enabling supply chain traceability through collaborative e-business. Information and Software Technology, 50(4), 342-359. doi:10.1016/j.infsof.2007.02.017Badia-Melis, R., Mishra, P., & Ruiz-García, L. (2015). Food traceability: New trends and recent advances. A review. Food Control, 57, 393-401. doi:10.1016/j.foodcont.2015.05.005Timestrip Visual Indicators of Time and Temperaturehttps://timestrip.com/Storøy, J., Thakur, M., & Olsen, P. (2013). The TraceFood Framework – Principles and guidelines for implementing traceability in food value chains. Journal of Food Engineering, 115(1), 41-48. doi:10.1016/j.jfoodeng.2012.09.018Pizzuti, T., Mirabelli, G., Sanz-Bobi, M. A., & Goméz-Gonzaléz, F. (2014). Food Track & Trace ontology for helping the food traceability control. Journal of Food Engineering, 120, 17-30. doi:10.1016/j.jfoodeng.2013.07.017Landt, J. (2005). The history of RFID. IEEE Potentials, 24(4), 8-11. doi:10.1109/mp.2005.1549751Costa, C., Antonucci, F., Pallottino, F., Aguzzi, J., Sarriá, D., & Menesatti, P. (2012). A Review on Agri-food Supply Chain Traceability by Means of RFID Technology. Food and Bioprocess Technology, 6(2), 353-366. doi:10.1007/s11947-012-0958-7Mainetti, L., Mele, F., Patrono, L., Simone, F., Stefanizzi, M. L., & Vergallo, R. (2013). An RFID-Based Tracing and Tracking System for the Fresh Vegetables Supply Chain. International Journal of Antennas and Propagation, 2013, 1-15. doi:10.1155/2013/531364Figorilli, S., Antonucci, F., Costa, C., Pallottino, F., Raso, L., Castiglione, M., … Menesatti, P. (2018). A Blockchain Implementation Prototype for the Electronic Open Source Traceability of Wood along the Whole Supply Chain. Sensors, 18(9), 3133. doi:10.3390/s18093133Aguzzi, J., Sbragaglia, V., Sarriá, D., García, J. A., Costa, C., Río, J. del, … Sardà, F. (2011). A New Laboratory Radio Frequency Identification (RFID) System for Behavioural Tracking of Marine Organisms. Sensors, 11(10), 9532-9548. doi:10.3390/s111009532Donelli, M. (2018). An RFID-Based Sensor for Masonry Crack Monitoring. Sensors, 18(12), 4485. doi:10.3390/s18124485De Souza, P., Marendy, P., Barbosa, K., Budi, S., Hirsch, P., Nikolic, N., … Davie, A. (2018). Low-Cost Electronic Tagging System for Bee Monitoring. Sensors, 18(7), 2124. doi:10.3390/s18072124Corchia, L., Monti, G., & Tarricone, L. (2019). A Frequency Signature RFID Chipless Tag for Wearable Applications. Sensors, 19(3), 494. doi:10.3390/s19030494Zuffanelli, S., Aguila, P., Zamora, G., Paredes, F., Martin, F., & Bonache, J. (2016). A High-Gain Passive UHF-RFID Tag with Increased Read Range. Sensors, 16(7), 1150. doi:10.3390/s16071150Monteleone, S., Sampaio, M., & Maia, R. F. (2017). A novel deployment of smart Cold Chain system using 2G-RFID-Sys temperature monitoring in medicine Cold Chain based on Internet of Things. 2017 IEEE International Conference on Service Operations and Logistics, and Informatics (SOLI). doi:10.1109/soli.2017.8120995Zou, Z., Chen, Q., Uysal, I., & Zheng, L. (2014). Radio frequency identification enabled wireless sensing for intelligent food logistics. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 372(2017), 20130313. doi:10.1098/rsta.2013.0313Azzarelli, J. M., Mirica, K. A., Ravnsbæk, J. B., & Swager, T. M. (2014). Wireless gas detection with a smartphone via rf communication. Proceedings of the National Academy of Sciences, 111(51), 18162-18166. doi:10.1073/pnas.1415403111Pies, M., Hajovsky, R., & Ozana, S. (2014). Wireless measurement of carbon monoxide concentration. 2014 14th International Conference on Control, Automation and Systems (ICCAS 2014). doi:10.1109/iccas.2014.6987843Azzara, A., Bocchino, S., Pagano, P., Pellerano, G., & Petracca, M. (2013). Middleware solutions in WSN: The IoT oriented approach in the ICSI project. 2013 21st International Conference on Software, Telecommunications and Computer Networks - (SoftCOM 2013). doi:10.1109/softcom.2013.6671886Ribeiro, A. R. L., Silva, F. C. S., Freitas, L. C., Costa, J. C., & Francês, C. R. (2005). SensorBus. Proceedings of the 3rd international IFIP/ACM Latin American conference on Networking - LANC ’05. doi:10.1145/1168117.1168119Sulc, V., Kuchta, R., & Vrba, R. (2010). IQRF Smart House - A Case Study. 2010 Third International Conference on Advances in Mesh Networks. doi:10.1109/mesh.2010.17Porkodi, R., & Bhuvaneswari, V. (2014). The Internet of Things (IoT) Applications and Communication Enabling Technology Standards: An Overview. 2014 International Conference on Intelligent Computing Applications. doi:10.1109/icica.2014.73EPC Radio-Frequency Identity Protocols. Generation-2 UHF RFIDhttps://www.gs1.org/sites/default/files/docs/epc/uhfc1g2_2_0_0_standard_20131101.pdfUusitalo, M. (2006). Global Vision for the Future Wireless World from the WWRF. IEEE Vehicular Technology Magazine>, 1(2), 4-8. doi:10.1109/mvt.2006.283570Sung, J., Lopez, T. S., & Kim, D. (2007). The EPC Sensor Network for RFID and WSN Integration Infrastructure. Fifth Annual IEEE International Conference on Pervasive Computing and Communications Workshops (PerComW’07). doi:10.1109/percomw.2007.113Chunxiao Fan, Zhigang Wen, Fan Wang, & Yuexin Wu. (2011). A middleware of Internet of Things (IoT) based on ZigBee and RFID. IET International Conference on Communication Technology and Application (ICCTA 2011). doi:10.1049/cp.2011.0765Centenaro, M., Vangelista, L., Zanella, A., & Zorzi, M. (2016). Long-range communications in unlicensed bands: the rising stars in the IoT and smart city scenarios. IEEE Wireless Communications, 23(5), 60-67. doi:10.1109/mwc.2016.7721743Hai Liu, Bolic, M., Nayak, A., & Stojmenovic, I. (2008). Taxonomy and Challenges of the Integration of RFID and Wireless Sensor Networks. IEEE Network, 22(6), 26-35. doi:10.1109/mnet.2008.4694171Bertolini, M., Bevilacqua, M., & Massini, R. (2006). FMECA approach to product traceability in the food industry. Food Control, 17(2), 137-145. doi:10.1016/j.foodcont.2004.09.013Zhang, M., & Li, P. (2012). RFID Application Strategy in Agri-Food Supply Chain Based on Safety and Benefit Analysis. Physics Procedia, 25, 636-642. doi:10.1016/j.phpro.2012.03.137Engels, D. W., Kang, Y. S., & Wang, J. (2013). On security with the new Gen2 RFID security framework. 2013 IEEE International Conference on RFID (RFID). doi:10.1109/rfid.2013.6548148SINIEV: Un Centro Inteligente De Control De Tránsito Y Transporte Que Beneficiaría A Todo El Paíshttps://revistadelogistica.com/actualidad/siniev-un-centro-inteligente-de-control-de-transito-y-transporte-que-beneficiara-a-todo-el-pais/Tentzeris, M. M., Kim, S., Traille, A., Aubert, H., Yoshihiro, K., Georgiadis, A., & Collado, A. (2013). Inkjet-printed RFID-enabled sensors on paper for IoT and “Smart Skin” applications. ICECom 2013. doi:10.1109/icecom.2013.6684749Vega, F., Pantoja, J., Morales, S., Urbano, O., Arevalo, A., Muskus, E., … Hernandez, N. (2016). An IoT-based open platform for monitoring non-ionizing radiation levels in Colombia. 2016 IEEE Colombian Conference on Communications and Computing (COLCOM). doi:10.1109/colcomcon.2016.7516379Yang, K., & Jia, X. (2011). Data storage auditing service in cloud computing: challenges, methods and opportunities. World Wide Web, 15(4), 409-428. doi:10.1007/s11280-011-0138-0Alfian, G., Rhee, J., Ahn, H., Lee, J., Farooq, U., Ijaz, M. F., & Syaekhoni, M. A. (2017). Integration of RFID, wireless sensor networks, and data mining in an e-pedigree food traceability system. Journal of Food Engineering, 212, 65-75. doi:10.1016/j.jfoodeng.2017.05.008Chen, R.-Y. (2015). Autonomous tracing system for backward design in food supply chain. Food Control, 51, 70-84. doi:10.1016/j.foodcont.2014.11.004Song, J., Wei, Q., Wang, X., Li, D., Liu, C., Zhang, M., & Meng, L. (2018). Degradation of carotenoids in dehydrated pumpkins as affected by different storage conditions. Food Research International, 107, 130-136. doi:10.1016/j.foodres.2018.02.024Montesano, D., Rocchetti, G., Putnik, P., & Lucini, L. (2018). Bioactive profile of pumpkin: an overview on terpenoids and their health-promoting properties. Current Opinion in Food Science, 22, 81-87. doi:10.1016/j.cofs.2018.02.003Rubio-Arraez, S., Capella, J. V., Castelló, M. L., & Ortolá, M. D. (2016). Physicochemical characteristics of citrus jelly with non cariogenic and functional sweeteners. Journal of Food Science and Technology, 53(10), 3642-3650. doi:10.1007/s13197-016-2319-4Carmona, L., Alquézar, B., Marques, V. V., & Peña, L. (2017). Anthocyanin biosynthesis and accumulation in blood oranges during postharvest storage at different low temperatures. Food Chemistry, 237, 7-14. doi:10.1016/j.foodchem.2017.05.07

    An architecture for reliable transportation of delicate goods

    Get PDF
    Adequate conditions are critical to avoiding damage or degradation of products during transportation, especially in the case of delicate goods like food products, live animals, precision machinery or art items, among others. The damages are not always readily identified: sometimes they are only detected several days or weeks after the merchandise has been delivered. Moreover, it may be hard to assess if the problems resulted from the transport conditions, and it may be even harder to prove it, making it difficult to determine and assign responsibilities. Also, transport is a global business, typically involving different companies and means (truck, train, plane, ship, …). Usually, customers hire the service to a single commercial entity, but the service is performed by several companies, like transporters, stockists and dispatchers. To know whether the transport requirements are fulfilled or not is thus essential to assessing responsibilities and encouraging compliance by all the players in the process. In this paper, the authors propose an architecture that allows certifying, in an exempt manner, the conditions under which the transport of sensitive goods are carried out. In case of compliance, it protects the entities of the transport chain and ensures the customer that the merchandise has not been subject to conditions that may have affected its integrity or quality. If problems are detected, it allows to identify the non‐compliant players and to assign responsibilities. The solution is based on ultra‐low‐power, low‐cost devices (equipped with several sensors, a real‐time clock, and Bluetooth Low Energy services), a mobile application and several cloud services (including a Coordinated Universal Time service)info:eu-repo/semantics/publishedVersio

    A comparison of processing techniques for producing prototype injection moulding inserts.

    Get PDF
    This project involves the investigation of processing techniques for producing low-cost moulding inserts used in the particulate injection moulding (PIM) process. Prototype moulds were made from both additive and subtractive processes as well as a combination of the two. The general motivation for this was to reduce the entry cost of users when considering PIM. PIM cavity inserts were first made by conventional machining from a polymer block using the pocket NC desktop mill. PIM cavity inserts were also made by fused filament deposition modelling using the Tiertime UP plus 3D printer. The injection moulding trials manifested in surface finish and part removal defects. The feedstock was a titanium metal blend which is brittle in comparison to commodity polymers. That in combination with the mesoscale features, small cross-sections and complex geometries were considered the main problems. For both processing methods, fixes were identified and made to test the theory. These consisted of a blended approach that saw a combination of both the additive and subtractive processes being used. The parts produced from the three processing methods are investigated and their respective merits and issues are discussed

    Reducing risk in pre-production investigations through undergraduate engineering projects.

    Get PDF
    This poster is the culmination of final year Bachelor of Engineering Technology (B.Eng.Tech) student projects in 2017 and 2018. The B.Eng.Tech is a level seven qualification that aligns with the Sydney accord for a three-year engineering degree and hence is internationally benchmarked. The enabling mechanism of these projects is the industry connectivity that creates real-world projects and highlights the benefits of the investigation of process at the technologist level. The methodologies we use are basic and transparent, with enough depth of technical knowledge to ensure the industry partners gain from the collaboration process. The process we use minimizes the disconnect between the student and the industry supervisor while maintaining the academic freedom of the student and the commercial sensitivities of the supervisor. The general motivation for this approach is the reduction of the entry cost of the industry to enable consideration of new technologies and thereby reducing risk to core business and shareholder profits. The poster presents several images and interpretive dialogue to explain the positive and negative aspects of the student process
    corecore