748 research outputs found

    Self-synchronized Encryption for Physical Layer in 10Gbps Optical Links

    Get PDF
    In this work a new self-synchronized encryption method for 10 Gigabit optical links is proposed and developed. Necessary modifications to introduce this kind of encryption in physical layers based on 64b/66b encoding, such as 10GBase-R, have been considered. The proposed scheme encrypts directly the 64b/66b blocks by using a symmetric stream cipher based on an FPE (Format Preserving Encryption) block cipher operating in PSCFB (Pipelined Statistical Cipher Feedback) mode. One of the main novelties in this paper is the security analysis done for this mode. For the first time, an expression for the IND-CPA (Indistinguishability under Chosen-Plaintext Attack) advantage of any adversary over this scheme has been derived. Moreover, it has been concluded that this mode can be considered secure in the same way of traditional modes are. In addition, the overall system has been simulated and implemented in an FPGA (Field Programmable Gate Array). An encrypted optical link has been tested with Ethernet data frames, concluding that it is possible to cipher traffic at this level, getting maximum throughput and hiding traffic pattern from passive eavesdroppers

    Self-Synchronized Encryption for Physical Layer in Gigabit Ethernet Optical Links

    Get PDF
    In this work a new self-synchronized symmetric encryption solution for high speed communication systems necessary to preserve the format of the plaintext is proposed, developed and tested. This new encryption mechanism is based on the block cipher operation mode called PSCFB (Pipelined Statistical Cipher Feedback) and the modulo operation. The confidentiality of this mode is analyzed in terms of its IND-CPA (Indistinguishability under Chosen-Plaintext Attack) advantage, concluding that it can be considered secure in the same way as traditional modes are. The encryption system has been integrated in the physical layer of a 1000Base-X Gigabit Ethernet Interface, where the 8b/10b symbol flow is encrypted at line rate. Moreover, an implementation of the proposed system has been carried out in an FPGA (Field Programmable Gate Array) device. Finally, an encrypted optical link has been tested with real Ethernet frames, getting maximum throughput and protecting the data traffic from passive eavesdroppers

    Self-synchronizing stream ciphers and dynamical systems: state of the art and open issues

    No full text
    International audienceDynamical systems play a central role in the design of symmetric cryptosystems. Their use has been widely investigated both in ''chaos-based'' private communications and in stream ciphers over finite fields. In the former case, they get the form of automata named as Moore or Mealy machines. The main charateristic of stream ciphers lies in that they require synchronization of complex sequences generated by the dynamical systems involved at the transmitter and the receiver part. In this paper, we focus on a special class of symmetric ciphers, namely the Self-Synchronizing Stream Ciphers. Indeed, such ciphers have not been seriously explored so far although they get interesting properties of synchronization which could make them very appealing in practice. We review and compare different design approaches which have been proposed in the open literature and fully-specified algorithms are detailed for illustration purpose. Open issues related to the validation and the implementation of Self-Synchronizing Stream Ciphers are developped. We highlight the reason why some concepts borrowed from control theory appear to be useful to this end

    Demystifying Wireless Technologies: Navigating Through The Wireless Technology Maze

    Get PDF
    A significant part of the growth in consumer-to-business electronic commerce is likely to originate from the increasing numbers of mobile computing devices and smart telephone devices. Most of the data from mobile computers will be carried over by emerging wireless networks. Many wireless technologies and standards are now available. As a result, it is becoming increasingly difficult for non-domain experts like managers, to sort through the maze of wireless technologies and standards to make business decisions involving these technologies. This article surveys existing and emerging wireless technologies and uses the Open System Interconnect (OSI) framework to organize the wireless landscape. The survey provides a quick reference to the entire spectrum of wireless technologies in use today

    Security and Privacy Issues in Wireless Mesh Networks: A Survey

    Full text link
    This book chapter identifies various security threats in wireless mesh network (WMN). Keeping in mind the critical requirement of security and user privacy in WMNs, this chapter provides a comprehensive overview of various possible attacks on different layers of the communication protocol stack for WMNs and their corresponding defense mechanisms. First, it identifies the security vulnerabilities in the physical, link, network, transport, application layers. Furthermore, various possible attacks on the key management protocols, user authentication and access control protocols, and user privacy preservation protocols are presented. After enumerating various possible attacks, the chapter provides a detailed discussion on various existing security mechanisms and protocols to defend against and wherever possible prevent the possible attacks. Comparative analyses are also presented on the security schemes with regards to the cryptographic schemes used, key management strategies deployed, use of any trusted third party, computation and communication overhead involved etc. The chapter then presents a brief discussion on various trust management approaches for WMNs since trust and reputation-based schemes are increasingly becoming popular for enforcing security in wireless networks. A number of open problems in security and privacy issues for WMNs are subsequently discussed before the chapter is finally concluded.Comment: 62 pages, 12 figures, 6 tables. This chapter is an extension of the author's previous submission in arXiv submission: arXiv:1102.1226. There are some text overlaps with the previous submissio

    Self-synchronizing stream ciphers and dynamical systems: state of the art and open issues

    Get PDF
    Dynamical systems play a central role in the design of symmetric cryptosystems. Their use has been widely investigated both in "chaos-based" private communications and in stream ciphers over finite fields. In the former case, they get the form of automata named as Moore or Mealy machines. The main charateristic of stream ciphers lies in that they require synchronization of complex sequences generated by the dynamical systems involved at the transmitter and the receiver part. In this paper, we focus on a special class of symmetric ciphers, namely the SelfSynchronizing Stream Ciphers. Indeed, such ciphers have not been seriously explored so far although they get interesting properties of synchronization which could make them very appealing in practice. We review and compare different design approaches which have been proposed in the open literature and fully-specified algorithms are detailed for illustration purpose. Open issues related to the validation and the implementation of Self-Synchronizing Stream Ciphers are developped. We highlight the reason why some concepts borrowed from control theory appear to be useful to this end

    Encriptación sobre Capa Física para Ethernet Óptico de Alta Velocidad

    Get PDF
    INTRODUCCIÓN-------------------------Hoy en día, los enlaces ópticos con tasas de transmisión de hasta 100 Gbps y superiores son ya una realidad. Gracias a los avances logrados en las comunicaciones ópticas durante las últimas décadas es posible afrontar anchos de banda cada vez mayores, lo que satisface las demandas de las aplicaciones más exigentes [CIS16], como por ejemplo las basadas en cloud computing o big data. Por otro lado, la seguridad en la información sigue siendo un asunto de gran importancia en las comunicaciones ya que el volumen de amenazas en la red se ha incrementado durante los últimos años [CIS18]. Los fallos en la seguridad podrían llevar al mal funcionamiento de un servicio o la pérdida de confidencialidad en datos críticos de los clientes. En un sistema de comunicaciones por capas, como por ejemplo en el modelo OSI (Open System Interconnection) o TCP/IP (Transmission Control Protocol/Internet Protocol), se pueden llevar a cabo tanto ataques pasivos como activos en los diferentes niveles de la comunicación. Dependiendo de las capas de comunicación utilizadas, distintos mecanismos pueden ser adoptados para lograr la seguridad de la información. Por ejemplo, protocolos estandarizados tales como MACsec [IEE06] o IPsec [KEN05] son empleados normalmente en la capa 2 (capa de enlace de datos) y capa 3 (capa de red), respectivamente. En ambos casos la encriptación es llevada a cabo en cada trama o paquete de datos de forma individual. Para el caso particular de las redes ópticas, el análisis de las amenazas en su capa 1 (capa física) también es considerado crítico para garantizar unas comunicaciones seguras [SKO16], [FUR14]. En este caso se pueden destacar tres tipos de ataques: ataques de inserción de señal, ataques por splitting y ataques a las infraestructuras físicas. Los ataques por splitting son normalmente empleados para espionaje pasivo o para producir degradación en la señal [SKO16], estos se pueden llevar a cabo fácilmente gracias a técnicas de derivación en la fibra. De hecho, hoy en día ya existen métodos de bajo coste para interceptar la señal óptica gracias a dispositivos de acoplamiento óptico y conversores electroópticos sin la necesidad de interferir perceptiblemente en las comunicaciones [ZAF11]. Con el fin de tratar estas amenazas y proteger la confidencialidad de los datos en la capa física, varios mecanismos relacionados con tecnologías fotónicas han sido propuestos [FOK11], por ejemplo OCDM (Optical Code Division Multiplexing) [JI17], SCOC (Secure Communications using Optical Chaos) [HIZ10] o QKD (Quantum Key Distribution) [ELK13]. Otras técnicas, también relacionadas con protocolos de capa física, cifran la información a nivel de bit independientemente de la tecnología fotónica empleada, como la encriptación de los datos del payload en las tramas OTN (Optical Transport Network) [GUA16]. Algunas de las ventajas reivindicadas por estas técnicas de encriptación consisten en cifrar la información “al vuelo” introduciendo un overhead nulo en los datos y una latencia muy baja (en el rango de nanosegundos) en la información transmitida [GUA16]. De hecho, hoy en día ya están disponibles en el mercado equipos de comunicaciones OTN que realizan el cifrado a la velocidad de línea sin mermar el throughput, es decir consiguiendo un rendimiento de la transmisión del 100% [MIC16]. Esto contrasta con lo que hacen ciertos protocolos en otras capas de comunicación [KOL13], [XEN06]. Por ejemplo, IPsec generalmente introduce latencias en el rango de milisegundos. Además, el overhead introducido por IPsec durante el cifrado limita el rendimiento de transmisión a valores entre el 20% y el 90% de la máxima tasa de datos posible sin encriptación [TRO05], [KOL13]. Aparte de lograr la confidencialidad, alguno de los métodos mencionados anteriormente también es capaz de conseguir privacidad contra intrusos pasivos [FOK11], entendiendo esta como la amenaza cuando dichos intrusos pueden detectar simplemente la presencia de comunicaciones, aunque sean incapaces de descifrar el contenido de la información de las mismas. Esta habilidad puede ofrecer seguridad contra ataques basados en el análisis de los patrones del tráfico, que permitirían revelar información del comportamiento de una compañía o instalación. Dentro de los estándares de comunicaciones ópticas, Ethernet es uno de los más empleados hoy día. Un claro ejemplo es el acceso a las redes de transporte ópticas donde este estándar es utilizado normalmente cuando las tasas de acceso superan el gigabit por segundo. Tal y como se muestra en la Fig.1-1, algunas tecnologías de acceso en los tramos de última milla de las CEN (Carrier Ethernet Networks) son Ethernet sobre fibra (Fibra Directa con Ethernet, Ethernet sobre SONET/SDH, Ethernet sobre PON), Ethernet sobre PDH o Ethernet inalámbrico [MET09]. Dos de los estándares ópticos Ethernet más empleados hoy en día son los denominados 1000Base-X y 10GBase-R con tasas de transmisión de 1 Gbps y 10 Gbps, respectivamente.OBJETIVOS-------------------En el caso de las comunicaciones sobre Ethernet óptico no existe ningún mecanismo que logre la mencionada privacidad al mismo tiempo que la confidencialidad, sin que además introduzca un overhead o latencias indeseadas. El objetivo de esta tesis es el de proporcionar soluciones a dos de los estándares ópticos Ethernet más empleados, tales como 1000Base-X o 10GBase-R, logrando las características citadas anteriormente. En general los principales aspectos que se pretenden desarrollar en esta tesis son los siguientes: • Realizar propuestas viables de modificación de ambos estándares, 1000Base-X y 10GBase-R, de forma que se pueda llevar a cabo la encriptación en la capa física. • Lograr la compatibilidad de las nuevas arquitecturas de encriptación con dichos estándares de forma que el hardware electrónico más dependiente del medio de transmisión, como los módulos ópticos SFP, los SERDES o los circuitos de recuperación de reloj y datos, no necesite modificaciones adicionales. • Realizar un estudio de los posibles esquemas de encriptación por streaming que sean capaces de cifrar datos a velocidades superiores a 1 Gbps y adaptarlos a las arquitecturas propuestas. • Estudiar posibles mecanismos para llevar a cabo la sincronización de los módulos de encriptación entre dos terminales remotos.• Lograr que las soluciones propuestas lleven a cabo la encriptación introduciendo la menor latencia posible, al menos en un orden de magnitud igual o inferior al de soluciones en otros estándares de comunicaciones como OTN. • Llevar a cabo un análisis de la seguridad de las soluciones propuestas, incluyendo el estudio de la capacidad de privacidad en las comunicaciones. • Proponer un esquema de chequeo de integridad, autenticación y refresco de claves a nivel de capa física. • Llevar a cabo la implementación y verificación física de las soluciones propuestas.PUBLICACIONES----------------------------[PER19a] A. Pérez-Resa, M. Garcia-Bosque, C. Sánchez-Azqueta, and S. Celma. "Chaotic Encryption Applied to Optical Ethernet in Industrial Control Systems". IEEE Transactions on Instrumentation and Measurement, 68(12):4876–4886, Dec 2019. [PER19b] A. Pérez-Resa, M. Garcia-Bosque, C. Sánchez-Azqueta, and S. Celma. "Physical Layer Encryption for Industrial Ethernet in Gigabit Optical Links". IEEE Transactions on Industrial Electronics, 66(4):3287–3295, April 2019. [PER19c] A. Pérez-Resa, M. Garcia-Bosque, C. Sánchez-Azqueta, and S. Celma. "Chaotic Encryption for 10-Gb Ethernet Optical Links". IEEE Transactions on Circuits and Systems I: Regular Papers, 66(2):859–868, Feb. 2019. [PER19d] A. Pérez-Resa, M. Garcia-Bosque, C. Sánchez-Azqueta, and S. Celma. "Self-Synchronized Encryption for Physical Layer in 10Gbps Optical Links". IEEE Transactions on Computers, 68(6):899–911, June 2019. [PER19e] A. Pérez-Resa, M. Garcia-Bosque, C. Sánchez-Azqueta, and S. Celma. "Self-Synchronized Encryption Using an FPE Block Cipher for Gigabit Ethernet". In 2019 15th Conference on Ph.D Research in Microelectronics and Electronics (PRIME), pages 81–84, Lausanne, Switzerland, July 2019. [PER20a] A. Pérez-Resa, M. Garcia-Bosque, C. Sánchez-Azqueta, and S. Celma. "A New Method for Format Preserving Encryption in High-Data Rate Communications". IEEE Access, 8:21003–21016, 2020. [PER20b] A. Pérez-Resa, M. Garcia-Bosque, C. Sánchez-Azqueta, and S. Celma. "Self-synchronized Encryption for Physical Layer in 1Gbps Ethernet Optical Links". IEEE Access, Pending Acceptance.<br /

    View on 5G Architecture: Version 1.0

    Get PDF
    The current white paper focuses on the produced results after one year research mainly from 16 projects working on the abovementioned domains. During several months, representatives from these projects have worked together to identify the key findings of their projects and capture the commonalities and also the different approaches and trends. Also they have worked to determine the challenges that remain to be overcome so as to meet the 5G requirements. The goal of 5G Architecture Working Group is to use the results captured in this white paper to assist the participating projects achieve a common reference framework. The work of this working group will continue during the following year so as to capture the latest results to be produced by the projects and further elaborate this reference framework. The 5G networks will be built around people and things and will natively meet the requirements of three groups of use cases: • Massive broadband (xMBB) that delivers gigabytes of bandwidth on demand • Massive machine-type communication (mMTC) that connects billions of sensors and machines • Critical machine-type communication (uMTC) that allows immediate feedback with high reliability and enables for example remote control over robots and autonomous driving. The demand for mobile broadband will continue to increase in the next years, largely driven by the need to deliver ultra-high definition video. However, 5G networks will also be the platform enabling growth in many industries, ranging from the IT industry to the automotive, manufacturing industries entertainment, etc. 5G will enable new applications like for example autonomous driving, remote control of robots and tactile applications, but these also bring a lot of challenges to the network. Some of these are related to provide low latency in the order of few milliseconds and high reliability compared to fixed lines. But the biggest challenge for 5G networks will be that the services to cater for a diverse set of services and their requirements. To achieve this, the goal for 5G networks will be to improve the flexibility in the architecture. The white paper is organized as follows. In section 2 we discuss the key business and technical requirements that drive the evolution of 4G networks into the 5G. In section 3 we provide the key points of the overall 5G architecture where as in section 4 we elaborate on the functional architecture. Different issues related to the physical deployment in the access, metro and core networks of the 5G network are discussed in section 5 while in section 6 we present software network enablers that are expected to play a significant role in the future networks. Section 7 presents potential impacts on standardization and section 8 concludes the white paper
    corecore