134 research outputs found

    Options for Securing RTP Sessions

    Get PDF
    The Real-time Transport Protocol (RTP) is used in a large number of different application domains and environments. This heterogeneity implies that different security mechanisms are needed to provide services such as confidentiality, integrity, and source authentication of RTP and RTP Control Protocol (RTCP) packets suitable for the various environments. The range of solutions makes it difficult for RTP-based application developers to pick the most suitable mechanism. This document provides an overview of a number of security solutions for RTP and gives guidance for developers on how to choose the appropriate security mechanism

    Reflections on security options for the real-time transport protocol framework

    Get PDF
    The Real-time Transport Protocol (RTP) supports a range of video conferencing, telephony, and streaming video ap- plications, but offers few native security features. We discuss the problem of securing RTP, considering the range of applications. We outline why this makes RTP a difficult protocol to secure, and describe the approach we have recently proposed in the IETF to provide security for RTP applications. This approach treats RTP as a framework with a set of extensible security building blocks, and prescribes mandatory-to-implement security at the level of different application classes, rather than at the level of the media transport protocol

    Options for Securing RTP Sessions

    Get PDF
    The Real-time Transport Protocol (RTP) is used in a large number of different application domains and environments. This heterogeneity implies that different security mechanisms are needed to provide services such as confidentiality, integrity, and source authentication of RTP and RTP Control Protocol (RTCP) packets suitable for the various environments. The range of solutions makes it difficult for RTP-based application developers to pick the most suitable mechanism. This document provides an overview of a number of security solutions for RTP and gives guidance for developers on how to choose the appropriate security mechanism

    A survey of the interaction between security protocols and transport services

    Get PDF
    This document provides a survey of commonly used or notable network security protocols, with a focus on how they interact and integrate with applications and transport protocols. Its goal is to supplement efforts to define and catalog Transport Services by describing the interfaces required to add security protocols. This survey is not limited to protocols developed within the scope or context of the IETF, and those included represent a superset of features a Transport Services system may need to support

    Subjective Audio Quality over a Secure IEEE 802.11n Draft 2.0 Wireless Local Area Network

    Get PDF
    This thesis investigates the quality of audio generated by a G.711 codec and transmission over an IEEE 802.11n draft 2.0 wireless local area network (WLAN). Decline in audio quality due to additional calls or by securing the WLAN with transport mode Internet Protocol Security (IPsec) is quantified. Audio quality over an IEEE 802.11n draft 2.0 WLAN is also compared to that of IEEE 802.11b and IEEE 802.11g WLANs under the same conditions. Audio quality is evaluated by following International Telecommunication Union Telecommunication Standardization Sector (ITU-T) Recommendation P.800, where human subjects rate audio clips recorded during various WLAN configurations. The Mean Opinion Score (MOS) is calculated as the average audio quality score given for each WLAN configuration. An 85% confidence interval is calculated for each MOS. Results suggest that audio quality over an IEEE 802.11n draft 2.0 WLAN is not higher than over an IEEE 802.11b WLAN when up to 10 simultaneous G.711 calls occur. A linear regression of the subjective scores also suggest that an IEEE 802.11n draft 2.0 WLAN can sustain an MOS greater than 3.0 (fair quality) for up to 75 simultaneous G.711 calls secured with WPA2, or up to 40 calls secured with both WPA2 and transport mode IPsec. The data strongly suggest that toll quality audio (MOS ≥ 4.0) is not currently practical over IEEE 802.11 WLANs secured with WPA2, even with the G.711 codec

    Real-time Audio-Visual Media Transport over QUIC

    Get PDF
    We consider the problem of how to transport low-latency, interactive, real-time traffic over QUIC. This is needed to support applications like WebRTC, but difficult to support due to the reliable, unframed, nature of QUIC streams. We review the needs of low-latency real-time applications and how they have been supported in previous protocols, then propose a minimal set of extensions to QUIC to provide such support. Compared to a raw datagram service, our extensions provide meaningful support for partially reliable and real-time flows, in a backwards compatible manner

    Securing the RTP framework: why RTP does not mandate a single media security solution

    Get PDF
    This memo discusses the problem of securing real-time multimedia sessions, and explains why the Real-time Transport Protocol (RTP), and the associated RTP control protocol (RTCP), do not mandate a single media security mechanism. Guidelines for designers and reviewers of future RTP extensions are provided, to ensure that appropriate security mechanisms are mandated, and that any such mechanisms are specified in a manner that conforms with the RTP architecture

    Voice and Video Capacity of a Secure Wireless System

    Get PDF
    Improving the security and availability of secure wireless multimedia systems is the purpose of this thesis. Specifically, this thesis answered research questions about the capacity of wireless multimedia systems and how three variables relate to this capacity. The effects of securing the voice signal, real-time traffic originating foreign to a wireless local area network and use of an audio-only signal compared with a combined signal were all studied. The research questions were answered through a comprehensive literature review in addition to an experiment which had thirty-six subjects using a secure wireless multimedia system which was developed as part of this thesis effort. Additionally, questions related to the techniques for deploying wireless multimedia system including the maturity and security of the technology were answered. The research identified weaknesses in existing analytical and computer models and the need for a concise and realistic model of wireless multimedia systems. The culmination of this effort was the integration of an audio-video system with an existing research platform which is actively collecting data for the Logistics Readiness Branch of the Air Force Research Laboratory
    • …
    corecore