458 research outputs found

    Toward a unified PNT, Part 2: Ambiguity and environmental data: Two further key challenges of multisensor positioning

    Get PDF
    The coming requirements of greater accuracy and reliability in a range of challenging environments for a multitude of missioncritical applications require a multisensor approach and an over-arching methodology that does not yet exist. The likelihood depends on both the positioning method and the context, both environmental and behavioral. Urban and indoor positioning techniques that do not require dedicated infrastructure are particularly vulnerable to ambiguity. Even where a signal of opportunity is identifiable, the transmission site may change without warning. For example, Wi-Fi access points are sometimes moved and mobile phone networks are periodically refigured. Thus, there is a risk of false landmark identification. The pattern-matching positioning method maintains a database of measurable parameters that vary with position. Examples include terrain height, magnetic field variations, Wi-Fi signal strengths, and GNSS signal availability information

    Review of Current Student-Monitoring Techniques used in eLearning-Focused recommender Systems and Learning analytics. The Experience API & LIME model Case Study

    Get PDF
    Recommender systems require input information in order to properly operate and deliver content or behaviour suggestions to end users. eLearning scenarios are no exception. Users are current students and recommendations can be built upon paths (both formal and informal), relationships, behaviours, friends, followers, actions, grades, tutor interaction, etc. A recommender system must somehow retrieve, categorize and work with all these details. There are several ways to do so: from raw and inelegant database access to more curated web APIs or even via HTML scrapping. New server-centric user-action logging and monitoring standard technologies have been presented in past years by several groups, organizations and standard bodies. The Experience API (xAPI), detailed in this article, is one of these. In the first part of this paper we analyse current learner-monitoring techniques as an initialization phase for eLearning recommender systems. We next review standardization efforts in this area; finally, we focus on xAPI and the potential interaction with the LIME model, which will be also summarized below

    Cryptographically Privileged State Estimation With Gaussian Keystreams

    Get PDF

    An Interactive Graphical User Interface Module for Soldier Health and Position Tracking System

    Get PDF
    Soldiers are the backbone of any armed force. They usually lose their lives due to the lack of medical assistance in emergency situations. Furthermore, army bases face problems due to the inability to track soldiers’ locations in the field. Hence, this paper proposes an interactive graphical user interface module (IGUIM) for soldiers’ bioinformatics acquisition and emergency reaction during combat, a global positioning system (GPS) is used to track soldiers’ locations through a device carried by the soldier. Soldiers’ bioinformatics are gathered using health monitoring biosensors, bidirectional communication between the soldiers and the army base is established via a global system for mobile (GSM). The proposed interactive module aims to enumerate the soldiers on the battlefield within a database that easily facilitates health monitoring, position tracking and bidirectional communication with each soldier through their identification number. The proposed IGUIM will increase the rate of soldiers’ survival in emergencies, which contributes to preserving the human resources of the army during combat

    The four key challenges of advanced multisensor navigation and positioning

    Get PDF
    The next generation of navigation and positioning systems must provide greater accuracy and reliability in a range of challenging environments to meet the needs of a variety of mission-critical applications. No single navigation technology is robust enough to meet these requirements on its own, so a multisensor solution is required. Although many new navigation and positioning methods have been developed in recent years, little has been done to bring them together into a robust, reliable, and cost-effective integrated system. To achieve this, four key challenges must be met: complexity, context, ambiguity, and environmental data handling. This paper addresses each of these challenges. It describes the problems, discusses possible approaches, and proposes a program of research and standardization activities to solve them. The discussion is illustrated with results from research into urban GNSS positioning, GNSS shadow matching, environmental feature matching, and context detection

    Automatic-dependent surveillance-broadcast experimental deployment using system wide information management

    Full text link
    This paper describes an automatic-dependent surveillance-broadcast (ADS-B) implementation for air-to-air and ground-based experimental surveillance within a prototype of a fully automated air traffic management (ATM) system, under a trajectory-based-operations paradigm. The system is built using an air-inclusive implementation of system wide information management (SWIM). This work describes the relations between airborne and ground surveillance (SURGND), the prototype surveillance systems, and their algorithms. System's performance is analyzed with simulated and real data. Results show that the proposed ADS-B implementation can fulfill the most demanding surveillance accuracy requirements

    Survey of Intrusion Detection Research

    Get PDF
    The literature holds a great deal of research in the intrusion detection area. Much of this describes the design and implementation of specific intrusion detection systems. While the main focus has been the study of different detection algorithms and methods, there are a number of other issues that are of equal importance to make these systems function well in practice. I believe that the reason that the commercial market does not use many of the ideas described is that there are still too many unresolved issues. This survey focuses on presenting the different issues that must be addressed to build fully functional and practically usable intrusion detection systems (IDSs). It points out the state of the art in each area and suggests important open research issues

    SDSF : social-networking trust based distributed data storage and co-operative information fusion.

    Get PDF
    As of 2014, about 2.5 quintillion bytes of data are created each day, and 90% of the data in the world was created in the last two years alone. The storage of this data can be on external hard drives, on unused space in peer-to-peer (P2P) networks or using the more currently popular approach of storing in the Cloud. When the users store their data in the Cloud, the entire data is exposed to the administrators of the services who can view and possibly misuse the data. With the growing popularity and usage of Cloud storage services like Google Drive, Dropbox etc., the concerns of privacy and security are increasing. Searching for content or documents, from this distributed stored data, given the rate of data generation, is a big challenge. Information fusion is used to extract information based on the query of the user, and combine the data and learn useful information. This problem is challenging if the data sources are distributed and heterogeneous in nature where the trustworthiness of the documents may be varied. This thesis proposes two innovative solutions to resolve both of these problems. Firstly, to remedy the situation of security and privacy of stored data, we propose an innovative Social-based Distributed Data Storage and Trust based co-operative Information Fusion Framework (SDSF). The main objective is to create a framework that assists in providing a secure storage system while not overloading a single system using a P2P like approach. This framework allows the users to share storage resources among friends and acquaintances without compromising the security or privacy and enjoying all the benefits that the Cloud storage offers. The system fragments the data and encodes it to securely store it on the unused storage capacity of the data owner\u27s friends\u27 resources. The system thus gives a centralized control to the user over the selection of peers to store the data. Secondly, to retrieve the stored distributed data, the proposed system performs the fusion also from distributed sources. The technique uses several algorithms to ensure the correctness of the query that is used to retrieve and combine the data to improve the information fusion accuracy and efficiency for combining the heterogeneous, distributed and massive data on the Cloud for time critical operations. We demonstrate that the retrieved documents are genuine when the trust scores are also used while retrieving the data sources. The thesis makes several research contributions. First, we implement Social Storage using erasure coding. Erasure coding fragments the data, encodes it, and through introduction of redundancy resolves issues resulting from devices failures. Second, we exploit the inherent concept of trust that is embedded in social networks to determine the nodes and build a secure net-work where the fragmented data should be stored since the social network consists of a network of friends, family and acquaintances. The trust between the friends, and availability of the devices allows the user to make an informed choice about where the information should be stored using `k\u27 optimal paths. Thirdly, for the purpose of retrieval of this distributed stored data, we propose information fusion on distributed data using a combination of Enhanced N-grams (to ensure correctness of the query), Semantic Machine Learning (to extract the documents based on the context and not just bag of words and also considering the trust score) and Map Reduce (NSM) Algorithms. Lastly we evaluate the performance of distributed storage of SDSF using era- sure coding and identify the social storage providers based on trust and evaluate their trustworthiness. We also evaluate the performance of our information fusion algorithms in distributed storage systems. Thus, the system using SDSF framework, implements the beneficial features of P2P networks and Cloud storage while avoiding the pitfalls of these systems. The multi-layered encrypting ensures that all other users, including the system administrators cannot decode the stored data. The application of NSM algorithm improves the effectiveness of fusion since large number of genuine documents are retrieved for fusion
    corecore