553 research outputs found

    The heterogeneity of inter-contact time distributions: its importance for routing in delay tolerant networks

    Full text link
    Prior work on routing in delay tolerant networks (DTNs) has commonly made the assumption that each pair of nodes shares the same inter-contact time distribution as every other pair. The main argument in this paper is that researchers should also be looking at heterogeneous inter-contact time distributions. We demonstrate the presence of such heterogeneity in the often-used Dartmouth Wi-Fi data set. We also show that DTN routing can benefit from knowing these distributions. We first introduce a new stochastic model focusing on the inter-contact time distributions between all pairs of nodes, which we validate on real connectivity patterns. We then analytically derive the mean delivery time for a bundle of information traversing the network for simple single copy routing schemes. The purpose is to examine the theoretic impact of heterogeneous inter-contact time distributions. Finally, we show that we can exploit this user diversity to improve routing performance.Comment: 6 page

    Routing in a many-to-one communication scenario in a realistic VDTN

    Get PDF
    In this paper, we evaluate and compare the performance of different routing protocols in a many-to-one communication within a Vehicular Delay Tolerant Network (VDTN). Seven groups with three stationary sensor nodes sense the temperature, humidity and wind speed and send these data to a stationary destination node that collect them for statistical and data analysis purposes. Vehicles moving in Tirana city roads in Albania during the opportunistic contacts will exchange the sensed data to destination node. The simulations are conducted with the Opportunistic Network Environment (ONE) simulator. For the simulations we considered two different scenarios where the distance of the source nodes from the destination is short and long. For both scenarios the effect of node density, ttl and node movement model is evaluated. The performance is analyzed using delivery probability, overhead ratio, average latency, average number of hops and average buffer time metrics. The simulation results show that the increase of node density increases the delivery probability for all protocols and both scenarios, and better results are achieved when shortest-path map-based movement model is used. The increase of ttl slightly affects the performance of all protocols. By increasing the distance between source nodes and destination node, delivery probability is decreased almost 10% for all protocols, the overhead for sprayandwait protocol does not change, but for other protocols is slightly increased and the average number of hops and average latency is increased.Peer ReviewedPostprint (author's final draft

    PROTECT: Proximity-based Trust-advisor using Encounters for Mobile Societies

    Full text link
    Many interactions between network users rely on trust, which is becoming particularly important given the security breaches in the Internet today. These problems are further exacerbated by the dynamics in wireless mobile networks. In this paper we address the issue of trust advisory and establishment in mobile networks, with application to ad hoc networks, including DTNs. We utilize encounters in mobile societies in novel ways, noticing that mobility provides opportunities to build proximity, location and similarity based trust. Four new trust advisor filters are introduced - including encounter frequency, duration, behavior vectors and behavior matrices - and evaluated over an extensive set of real-world traces collected from a major university. Two sets of statistical analyses are performed; the first examines the underlying encounter relationships in mobile societies, and the second evaluates DTN routing in mobile peer-to-peer networks using trust and selfishness models. We find that for the analyzed trace, trust filters are stable in terms of growth with time (3 filters have close to 90% overlap of users over a period of 9 weeks) and the results produced by different filters are noticeably different. In our analysis for trust and selfishness model, our trust filters largely undo the effect of selfishness on the unreachability in a network. Thus improving the connectivity in a network with selfish nodes. We hope that our initial promising results open the door for further research on proximity-based trust

    Orion Routing Protocol for Delay-Tolerant Networks

    Full text link
    In this paper, we address the problem of efficient routing in delay tolerant network. We propose a new routing protocol dubbed as ORION. In ORION, only a single copy of a data packet is kept in the network and transmitted, contact by contact, towards the destination. The aim of the ORION routing protocol is twofold: on one hand, it enhances the delivery ratio in networks where an end-to-end path does not necessarily exist, and on the other hand, it minimizes the routing delay and the network overhead to achieve better performance. In ORION, nodes are aware of their neighborhood by the mean of actual and statistical estimation of new contacts. ORION makes use of autoregressive moving average (ARMA) stochastic processes for best contact prediction and geographical coordinates for optimal greedy data packet forwarding. Simulation results have demonstrated that ORION outperforms other existing DTN routing protocols such as PRoPHET in terms of end-to-end delay, packet delivery ratio, hop count and first packet arrival
    • …
    corecore