973 research outputs found

    Encoding of phonology in a recurrent neural model of grounded speech

    Full text link
    We study the representation and encoding of phonemes in a recurrent neural network model of grounded speech. We use a model which processes images and their spoken descriptions, and projects the visual and auditory representations into the same semantic space. We perform a number of analyses on how information about individual phonemes is encoded in the MFCC features extracted from the speech signal, and the activations of the layers of the model. Via experiments with phoneme decoding and phoneme discrimination we show that phoneme representations are most salient in the lower layers of the model, where low-level signals are processed at a fine-grained level, although a large amount of phonological information is retain at the top recurrent layer. We further find out that the attention mechanism following the top recurrent layer significantly attenuates encoding of phonology and makes the utterance embeddings much more invariant to synonymy. Moreover, a hierarchical clustering of phoneme representations learned by the network shows an organizational structure of phonemes similar to those proposed in linguistics.Comment: Accepted at CoNLL 201

    Analyzing analytical methods: The case of phonology in neural models of spoken language

    Full text link
    Given the fast development of analysis techniques for NLP and speech processing systems, few systematic studies have been conducted to compare the strengths and weaknesses of each method. As a step in this direction we study the case of representations of phonology in neural network models of spoken language. We use two commonly applied analytical techniques, diagnostic classifiers and representational similarity analysis, to quantify to what extent neural activation patterns encode phonemes and phoneme sequences. We manipulate two factors that can affect the outcome of analysis. First, we investigate the role of learning by comparing neural activations extracted from trained versus randomly-initialized models. Second, we examine the temporal scope of the activations by probing both local activations corresponding to a few milliseconds of the speech signal, and global activations pooled over the whole utterance. We conclude that reporting analysis results with randomly initialized models is crucial, and that global-scope methods tend to yield more consistent results and we recommend their use as a complement to local-scope diagnostic methods.Comment: ACL 202

    Symbolic inductive bias for visually grounded learning of spoken language

    Full text link
    A widespread approach to processing spoken language is to first automatically transcribe it into text. An alternative is to use an end-to-end approach: recent works have proposed to learn semantic embeddings of spoken language from images with spoken captions, without an intermediate transcription step. We propose to use multitask learning to exploit existing transcribed speech within the end-to-end setting. We describe a three-task architecture which combines the objectives of matching spoken captions with corresponding images, speech with text, and text with images. We show that the addition of the speech/text task leads to substantial performance improvements on image retrieval when compared to training the speech/image task in isolation. We conjecture that this is due to a strong inductive bias transcribed speech provides to the model, and offer supporting evidence for this.Comment: ACL 201

    Analyzing Hidden Representations in End-to-End Automatic Speech Recognition Systems

    Full text link
    Neural models have become ubiquitous in automatic speech recognition systems. While neural networks are typically used as acoustic models in more complex systems, recent studies have explored end-to-end speech recognition systems based on neural networks, which can be trained to directly predict text from input acoustic features. Although such systems are conceptually elegant and simpler than traditional systems, it is less obvious how to interpret the trained models. In this work, we analyze the speech representations learned by a deep end-to-end model that is based on convolutional and recurrent layers, and trained with a connectionist temporal classification (CTC) loss. We use a pre-trained model to generate frame-level features which are given to a classifier that is trained on frame classification into phones. We evaluate representations from different layers of the deep model and compare their quality for predicting phone labels. Our experiments shed light on important aspects of the end-to-end model such as layer depth, model complexity, and other design choices.Comment: NIPS 201

    Wave to Syntax: Probing spoken language models for syntax

    Full text link
    Understanding which information is encoded in deep models of spoken and written language has been the focus of much research in recent years, as it is crucial for debugging and improving these architectures. Most previous work has focused on probing for speaker characteristics, acoustic and phonological information in models of spoken language, and for syntactic information in models of written language. Here we focus on the encoding of syntax in several self-supervised and visually grounded models of spoken language. We employ two complementary probing methods, combined with baselines and reference representations to quantify the degree to which syntactic structure is encoded in the activations of the target models. We show that syntax is captured most prominently in the middle layers of the networks, and more explicitly within models with more parameters.Comment: Accepted to Interspeech 202

    From Phonology to Syntax:Unsupervised Linguistic Typology at Different Levels with Language Embeddings

    Get PDF
    A core part of linguistic typology is the classification of languages according to linguistic properties, such as those detailed in the World Atlas of Language Structure (WALS). Doing this manually is prohibitively time-consuming, which is in part evidenced by the fact that only 100 out of over 7,000 languages spoken in the world are fully covered in WALS. We learn distributed language representations, which can be used to predict typological properties on a massively multilingual scale. Additionally, quantitative and qualitative analyses of these language embeddings can tell us how language similarities are encoded in NLP models for tasks at different typological levels. The representations are learned in an unsupervised manner alongside tasks at three typological levels: phonology (grapheme-to-phoneme prediction, and phoneme reconstruction), morphology (morphological inflection), and syntax (part-of-speech tagging). We consider more than 800 languages and find significant differences in the language representations encoded, depending on the target task. For instance, although Norwegian Bokm{\aa}l and Danish are typologically close to one another, they are phonologically distant, which is reflected in their language embeddings growing relatively distant in a phonological task. We are also able to predict typological features in WALS with high accuracies, even for unseen language families.Comment: Accepted to NAACL 2018 (long paper). arXiv admin note: text overlap with arXiv:1711.0546
    • 

    corecore