222 research outputs found

    A Rate-Compatible Sphere-Packing Analysis of Feedback Coding with Limited Retransmissions

    Full text link
    Recent work by Polyanskiy et al. and Chen et al. has excited new interest in using feedback to approach capacity with low latency. Polyanskiy showed that feedback identifying the first symbol at which decoding is successful allows capacity to be approached with surprisingly low latency. This paper uses Chen's rate-compatible sphere-packing (RCSP) analysis to study what happens when symbols must be transmitted in packets, as with a traditional hybrid ARQ system, and limited to relatively few (six or fewer) incremental transmissions. Numerical optimizations find the series of progressively growing cumulative block lengths that enable RCSP to approach capacity with the minimum possible latency. RCSP analysis shows that five incremental transmissions are sufficient to achieve 92% of capacity with an average block length of fewer than 101 symbols on the AWGN channel with SNR of 2.0 dB. The RCSP analysis provides a decoding error trajectory that specifies the decoding error rate for each cumulative block length. Though RCSP is an idealization, an example tail-biting convolutional code matches the RCSP decoding error trajectory and achieves 91% of capacity with an average block length of 102 symbols on the AWGN channel with SNR of 2.0 dB. We also show how RCSP analysis can be used in cases where packets have deadlines associated with them (leading to an outage probability).Comment: To be published at the 2012 IEEE International Symposium on Information Theory, Cambridge, MA, USA. Updated to incorporate reviewers' comments and add new figure

    Secure, reliable, and efficient communication over the wiretap channel

    Get PDF
    Secure wireless communication between devices is essential for modern communication systems. Physical-layer security over the wiretap channel may provide an additional level of secrecy beyond the current cryptographic approaches. Given a sender Alice, a legitimate receiver Bob, and a malicious eavesdropper Eve, the wiretap channel occurs when Eve experiences a worse signal-to-noise ratio than Bob. Previous study of the wiretap channel has tended to make assumptions that ignore the reality of wireless communication. This thesis presents a study of short block length codes with the aim of both reliability for Bob and confusion for Eve. The standard approach to wiretap coding is shown to be very inefficient for reliability. Quantifying Eve's confusion in terms of entropy is not solved in many cases, though it is possible for codes with a moderate complexity trellis representation. Using error rate arguments, error correcting codes with steep performance curves turn out to be desirable both for reliability and confusion.Masteroppgave i informatikkINF399MAMN-INFMAMN-PRO

    Deterministic Rateless Codes for BSC

    Full text link
    A rateless code encodes a finite length information word into an infinitely long codeword such that longer prefixes of the codeword can tolerate a larger fraction of errors. A rateless code achieves capacity for a family of channels if, for every channel in the family, reliable communication is obtained by a prefix of the code whose rate is arbitrarily close to the channel's capacity. As a result, a universal encoder can communicate over all channels in the family while simultaneously achieving optimal communication overhead. In this paper, we construct the first \emph{deterministic} rateless code for the binary symmetric channel. Our code can be encoded and decoded in O(β)O(\beta) time per bit and in almost logarithmic parallel time of O(βlogn)O(\beta \log n), where β\beta is any (arbitrarily slow) super-constant function. Furthermore, the error probability of our code is almost exponentially small exp(Ω(n/β))\exp(-\Omega(n/\beta)). Previous rateless codes are probabilistic (i.e., based on code ensembles), require polynomial time per bit for decoding, and have inferior asymptotic error probabilities. Our main technical contribution is a constructive proof for the existence of an infinite generating matrix that each of its prefixes induce a weight distribution that approximates the expected weight distribution of a random linear code

    Underwater acoustic communications and adaptive signal processing

    Get PDF
    This dissertation proposes three new algorithms for underwater acoustic wireless communications. One is a new tail-biting circular MAP decoder for full tail-biting convolution (FTBC) codes for very short data blocks intended for Internet of Underwater Things (IoUT). The proposed algorithm was evaluated by ocean experiments and computer simulations on both Physical (PHY) and Media access control (MAC) layers. The ocean experimental results show that without channel equalization, the full tail-biting convolution (FTBC) codes with short packet lengths not only can perform similarly to zero-tailing convolution (ZTC) codes in terms of bit error rate (BER) in the PHY layer. Computer simulation results show that the FTBC codes outperform the ZTC codes in terms of MAC layer metrics, such as collision rate and bandwidth utilization, in a massive network of battery powered IoUT devices. Second, this dissertation also proposes a new approach to utilizing the underwater acoustic (UWA) wireless communication signals acquired in a real-world experiment as a tool for evaluating new coding and modulation schemes in realistic doubly spread UWA channels. This new approach, called passband data reuse, provides detailed procedures for testing the signals under test (SUT) that change or add error correction coding, change bit to symbol mapping (baseband modulation) schemes from a set of original experimental data --Abstract, page iv

    List Decoding of Short Codes for Communication over Unknown Fading Channels

    Get PDF
    In this paper, the advantages of list decoding for short packet transmission over fading channels with an unknown state are illustrated. The principle is applied to polar codes (under successive cancellation list decoding) and to general short binary linear block codes (under ordered-statistics decoding). The proposed decoders assume neither a-priori knowledge of the channel coefficients, nor of their statistics. The scheme relies on short pilot fields that are used only to derive an initial channel estimate. The channel estimate is required to be accurate enough to enable a good list construction, i.e., the construction of a list that contains, with high probability, the transmitted codeword. The final decision on the message is obtained by applying a list. This allows one to use very few pilots, thus reducing the the Rayleigh block-fading channel and compared to finite-length performance bounds. The proposed technique provides (in the short block length regime) gains of 1 dB with respect to a traditional pilot-aided transmission scheme

    Feedback Communication Systems with Limitations on Incremental Redundancy

    Full text link
    This paper explores feedback systems using incremental redundancy (IR) with noiseless transmitter confirmation (NTC). For IR-NTC systems based on {\em finite-length} codes (with blocklength NN) and decoding attempts only at {\em certain specified decoding times}, this paper presents the asymptotic expansion achieved by random coding, provides rate-compatible sphere-packing (RCSP) performance approximations, and presents simulation results of tail-biting convolutional codes. The information-theoretic analysis shows that values of NN relatively close to the expected latency yield the same random-coding achievability expansion as with N=N = \infty. However, the penalty introduced in the expansion by limiting decoding times is linear in the interval between decoding times. For binary symmetric channels, the RCSP approximation provides an efficiently-computed approximation of performance that shows excellent agreement with a family of rate-compatible, tail-biting convolutional codes in the short-latency regime. For the additive white Gaussian noise channel, bounded-distance decoding simplifies the computation of the marginal RCSP approximation and produces similar results as analysis based on maximum-likelihood decoding for latencies greater than 200. The efficiency of the marginal RCSP approximation facilitates optimization of the lengths of incremental transmissions when the number of incremental transmissions is constrained to be small or the length of the incremental transmissions is constrained to be uniform after the first transmission. Finally, an RCSP-based decoding error trajectory is introduced that provides target error rates for the design of rate-compatible code families for use in feedback communication systems.Comment: 23 pages, 15 figure
    corecore